

Coated Microstrip 1B Edge-Coupled Offset Striptine IBIAIR Surface Coplanar Strips 2B Diff Coated Coplanar Waveguide 2B Dual Coated Microstrip 1B Edge-Coupled Offset Striptine IBIAIR Image: Striptine Coplanar Strips 2D Image: Striptine Coplanar Strips 2B Diff Coated Coplanar Strips 2B Diff Coated Coplanar Strips 2B Dual Coated Microstrip 1B Edge-Coupled Offset Striptine ZEAIR Image: Striptine Coplanar Strips 2D Image: Striptine Coplanar Strips 2B Image: Striptine Coplanar Strips 2B Diff Coated Coplanar Strips 2B Diff Coated Coplanar Strips 2B Dual Coated Microstrip 1B Edge-Coupled Offset Striptine ZEAIR Image: Striptine Coplanar Strips 2D Image: Striptine Coplanar Strips 2B Image: Striptine ZEAIR Image: Striptine ZEAIR Image: Striptine ZEAIR Image: Striptine Coplanar Strips 2D Image: Striptine ZEAIR Image

Si8000m 2021 - 2022 Preview

Richard Attrill – September 2022 (Rev 3)

Copyright © Polar Instruments 2022

Introducing the latest features of Si8000m

Welcome to a preview of Si8000m.

Since January 2021 we have released seven versions of Si8000m, each introducing a number of new features that have been requested through our Polarcare software maintenance service.

These slides are arranged in a "newest first" format. A slide containing the version number and release date precedes information detailing the new features contained in each release.

If you would like to have a web-based demonstration please contact your local Polar office, details are shown on the last slide of this presentation

Please note: the Si8000m units have been set to Mils in the following screen grabs

2

Si8000m v22.09.01 (September 2022)

Enhancements to the Import Polar CITS Datalog File option

polarinstruments.com

Copyright © Polar Instruments 2022

5

Import CITS Datalog File option – feature recap

- Whilst working with controlled impedance designs it is often desirable to compare the reality of the measurement data against the modelled structure.
- 'Closing the loop' between the predicted and actual measured results has a number of benefits for both the design and fabrication environments. It allows for fine tuning of the structure parameters in future manufacturing batches, statistical analysis and improved overall process control.
- This capability within the Polar's Si8000m / Si8000m field solver products allows the user to quickly import measurement data directly from the industry-standard Polar Controlled Impedance Test System (CITS).
- If you are a design customer using the Si8000m / Si8000m and would like to use this feature, please request the Polar CITS Datalog File from your fabricator.

Import CITS Datalog File option – feature recap

Import CITS Datalog File option – feature recap

polarinstruments.com

Copyright © Polar Instruments 2022

7

8

Import CITS Datalog File option – feature recap

Step 2 : Select Data	Log Record	Each test record type found in the data
Data Log Records	Description - L01, Layer - 1, Nominal Impedance - 60.00	log file is listed in the drop down. In this
Project Structure	Description - L01, Layer - 1, Nominal Impedance - 60.00 Description - L03 Layer - 3, Nominal Impedance - 60.00	case there are four tests.
Description	Description - L06, Layer - 6, Nominal Impedance - 60.00 Description - L08, Layer - 8, Nominal Impedance - 60.00	
Nominal Impedance	60.00 Tol+ % 10.00 Tol- % 10.00	Polar Si8000 (
		File Edit Conf
- Stop 2 · Soloot Dat	a Log Report	
Data Log Records	Description - L01, Layer - 1, Nominal Impedance - 60.00	
Project Structure	L1 60 ohms (1)	
Description	L1 60 ohms (1)	[1] 60 obms (1)
Nominal Impedance	L3 60 ohms (2) L6 60 ohms (3)	
Nominarmpedance	L8 60 obms (4)	
tch one of the four n	odelled	L3 60 ohms (2)
ires from the Project	group	
st a data log test reco	ord simply	
ure dropdown		
		L6 60 ohms (3)
		Four structures loaded into
		the Project group
		L8 60 ohms (4)

9

Import CITS Datalog File option – feature recap

Import CITS Datalog File option – feature recap

10

11

Import CITS Datalog File option – feature recap

Import CITS Datalog File option – feature recap

Measurement Data:

The CITS Data Log data may also be viewed in a data grid layout. This is especially useful for viewing the Result data (Pass / Fail)

Graph Analysis (Line) Analysis (Bar) Measurement Data

Result	Index	Board Serial	D	ate	Time	Average	SD	Maximum	Minimum	Station	Description	Layer	Nominal	Tol+ %	Tol- %	Instrument	Serial No
Passed	1	2	4	05/02/13	12:48	60.8	0.8	61.9	59.56	_TEST STATION 1_	L01		1 60	10	1	CITS880	17581
Passed	2	2	9	05/02/13	12:50	61.77	0.95	63.21	59.93	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	3	1	7	05/02/13	12:51	63.01	0.94	64.48	61.68	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	4	3	9	05/02/13	12:52	63.22	1.07	64.62	61.29	_TEST STATION 1_	L01		1 60	10	1) CITS880	17581
Passed	5		8	05/02/13	12:59	63.93	0.95	65.32	62.2	_TEST STATION 1_	L01		1 60	10	1) CITS880	17581
Passed	6	1	0	05/02/13	13:00	61.17	0.89	62.69	59.63	_TEST STATION 1_	L01		1 60	10	1) CITS880	17581
Passed	7	3	2	05/02/13	13:01	62.38	0.88	63.58	60.72	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	8	2	1	05/02/13	13:01	62.37	0.82	63.88	60.98	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	9		4	05/02/13	13:02	63.35	0.68	64.41	61.75	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	10	3	3	05/02/13	13:03	61.81	0.78	62.95	60.09	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	11	1	8	05/02/13	13:03	60.22	0.62	61.48	59.09	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	12		3	05/02/13	13:04	60.54	0.75	62.1	59.19	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	13	1	5	05/02/13	13:05	61.46	0.73	62.83	60.12	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	14		2	05/02/13	13:05	60.09	0.67	61.24	58.57	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	15	2	3	05/02/13	13:06	61.01	0.78	62.4	59.69	_TEST STATION 1_	L01		1 60	10	1) CITS880	17581
Passed	16		5	05/02/13	13:07	61.05	0.63	62.14	59.49	_TEST STATION 1_	L01		1 60	10	1) CITS880	17581
Passed	17		6	05/02/13	13:07	61.54	0.8	62.98	60.11	_TEST STATION 1_	L01		1 60	10	1) CITS880	17581
Passed	18	7	6	05/02/13	13:08	62.49	0.92	63.44	60.32	_TEST STATION 1_	L01		1 60	10	1) CITS880	17581
Passed	19	1	1	05/02/13	13:09	61.79	0.83	63.08	60.37	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	20	3	1	05/02/13	13:09	60.25	0.65	61.37	58.85	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	21	1;	2	05/02/13	13:10	62.01	0.69	63.24	60.65	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	22		7	05/02/13	13:11	63.08	1.13	64.89	60.84	_TEST STATION 1_	L01		1 60	10	1	J CITS880	17581
Passed	23	1	9	05/02/13	13:11	61.63	0.72	62 81	60 19	TEST STATION 1	1.01		1 60	10	1	1 CITS880	17581

Si8000m v22.04 (April 2022)

New Differential Via Calculation capability

New Differential Via Calculation

Via Checks					×			
Via Stub Check Via Pad / Anti-Pad Calculation Differential Via Calculation								
Differential Via Calculation Anti-Pad Style C Horizontal Oval Anti-Pad Round / Oblong Anti-Pad 								
	Drill Diameter (t)	DD [15.0000 —	J				
Round Anti-Pad (APW = APH)	Via Pitch (S)	Ρſ	35.0000	-J				
	Anti-Pad Width (b)	APW [50.8000	_]				
	Anti-Pad Height (W')	APH [50.8000	_j				
	Dielectric Constant (Dkz)	Dkz 🛛	3.6350					
Oblong Anti-Pad DD APW	Dielectric Anisotropy (%)	Ī	0.00					
www.polarinstruments.com	Odd Mode Impedance (Zvia)	Zodd [42.44					
Please refer to the parameters in parentheses when reading <u>Application Note</u>	Differential Impedance	Zdiff	84.88					
Courtesy of Bert Simonovich, Lamsim Enterprises Inc	Effective Dielectric Constant	DkEff [4.4430	Enter via structure para	ameters by			
Note: The model works for a simple differential pair structure with no pads and se there will not be sufficient excess capacitance from the planes so the accuracy	either keying the dimension values or use sliders to gauge the impact of							
Calculatio	varying each paramete	1						

New Differential Via Calculation

New Differential Via Calculation

Finally, you are worried about the size and design of the differential via footprint used for the backplane connectors because you know they can be devastating to the quality of the received signal. You want to maximize the routing channel through the connector field, which requires you to shrink the anti-pad dimensions, so the tracks will be covered by the reference planes, but you can't easily quantify the consequences on the via of doing so.

may not be good enough for this higher speed application.

You have done all you can think of. based on experience. to make the vias as transparent as possible without

17

Si8000m v22.02 (February 2022)

Track Resistance Calculator (TRC Plus) enhancements

19

Track Resistance Calculator (TRC Plus) enhancements

Track Resistance Calculator (TRC Plus) enhancements

21 Copyright © Polar Instruments 2022

Si8000m v21.09 (Sept 2021)

Populate a Project from Sensitivity Analysis Results

(requires the Si Projects feature)

When using the Sensitivity Analysis option it is often useful to examine the calculated results in more details. It is now possible to auto-create a Project containing structures based upon the Sensitivity Analysis results data.

The following slides provide further details:

Populate a Project from Sensitivity Analysis Results

24

25

Populate a Project from Sensitivity Analysis Results

Populate a Project from Sensitivity Analysis Results

26

Populate a Project from Sensitivity Analysis Results

27

Populate a Project from Sensitivity Analysis Results - Summary

- As separate structure in a Project it is now possible to examine the results in a lot more detail than when in sensitivity analysis
- As a Project the structure data can be stored as a .SIP file and recalled later
- Useful to both fabricators and design companies

29

Track Resistance Calculator (TRC Plus)

Track Resistance Calculator (TRC Plus)

1. Interactive track material image.

Clicking on a track parameter label will highlight the associated Track Dimension field (text box). Enter data into the active field.

Double-clicking anywhere on the image will bring up the Materials Editor.

2. Material selection and properties Select the material via the drop-down list.

Fields coloured in light-blue are not directly editable but the field values can be in the Materials Editor.

Fields coloured in light-green are editable by the user. For example, Operating Temperature will determine a material's resistivity at that temperature, which in turn will be applied in calculating the track resistance.

3. Units

Switch to your preferred units by clicking the associated option button – imperial units include Mils (Thou) and Inches; for metric units choose Microns (Micrometres) or Millimetres.

4. Track or trace dimensions

Enter or change track dimensions in the Track Dimensions in the chosen units.

5. Resistance result

Calculation of the track resistance. The result should update immediately upon any changes to the editable (light-green) fields.

6. Voltage Drop calculation result

The calculated Voltage Drop is displayed in the VD (Volts) text box

Other enhancements

 Monte Carlo Analysis. New option added to export the Iterations / Results to Clipboard (for Excel), accessible from the right-click menu

Si8000m v21.04 (April 2021)

Monte Carlo Analysis maximum iteration increased to 9000

Si8000m v21.01 (January 2021)

Monte Carlo support added for Dual Coated structures

Other enhancements

• FlexNet Publisher / FLEXIm v11.17.2.0 supported

Coated Microstrip 18 Edge-Coupled Officet Striptine 1B1A1R Surface Coplanar Strips 2B Diff Coated Strips 2B Diff Coated Coplanar Strips 2B Diff Coated Coplanar Strips 2B Diff Coated Copl

Thank you for viewing this Si8000m 2021 – 2022 preview. If you have questions we would be delighted to help you. Your local contact information is contained on the following slide

Polar Logo & graphic devices are registered trade marks of Polar Instruments Ltd. Copyright Polar Instruments Ltd (c) 2022

Coated Microstrip 1B	Edge-Coupled Offset Stripline 1B1A1R	Surface Coplanar Strips With Ground 2B	Coated Coplanar Strips 2B	Diff Coated Coplanar Waveguide 2B	Dual Coated Microstrip 1B	Edge-Coupled Offset Stripline 2B1A1
	51, W2 H2 E2	W2 01 02 11	01 CET C3 C2 W2 D1 C2 T1			51 W2 H3 E3
	H	HI En		H1 E11		H1 Eri
WI	HEP WI	WI UI	WI UI	100	W.	REF. WI

For more information: Contact Polar now:	Phone
USA / Canada / Mexico <u>Geoffrey Hazelett</u>	(503) 356 5270
Asia / Pacific <u>Terence Chew</u>	+65 6873 7470
UK / Europe <u>Neil Chamberlain</u>	+44 23 9226 9113
Germany / Austria / Switzerland <u>Hermann Reischer</u>	+43 7666 20041-0
www.polarinstruments.com	

Polar Logo & graphic devices are registered trade marks of Polar Instruments Ltd. Copyright Polar Instruments Ltd (c) 2022