


Coated Microstrip 1B Edge-Coupled Offset Striptione UB1ATR Surface Coplanar Strips With Ground 2B Coated Coplanar Strips 2B Diff Coated Coplanar Waveguide 2B Dual Coated Microstrip 1B Edge-Coupled Offset Striptione 2B1ATR Coated Microstrip 1B Image: Coated Microstrip 1B Image: Coated Microstrip 1B Image: Coated Microstrip 1B Edge-Coupled Offset Striptione 2B1ATR Image: Coated Microstrip 1B Edge-Coupled Offset Striptione 2B1ATR Image: Coated Microstrip 1B Ima

Speedstack 2021 - 2022 Preview

Richard Attrill – September 2022 (Rev 9)

Copyright © Polar Instruments 2022

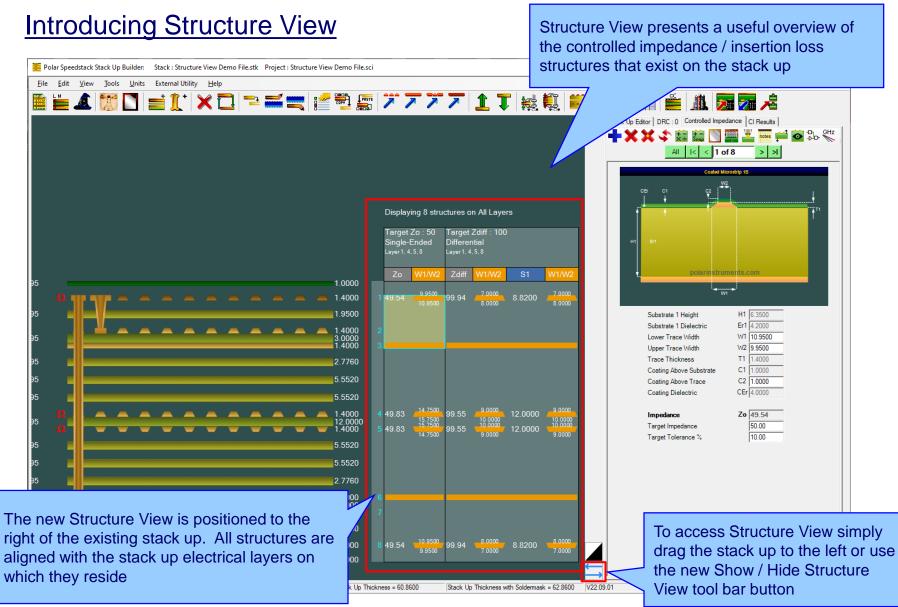
Introducing the latest features of Speedstack

Welcome to a preview of Speedstack.

Since January 2021 we have released 10 versions of Speedstack, each introducing a number of new features that have been requested through our Polarcare software maintenance service.

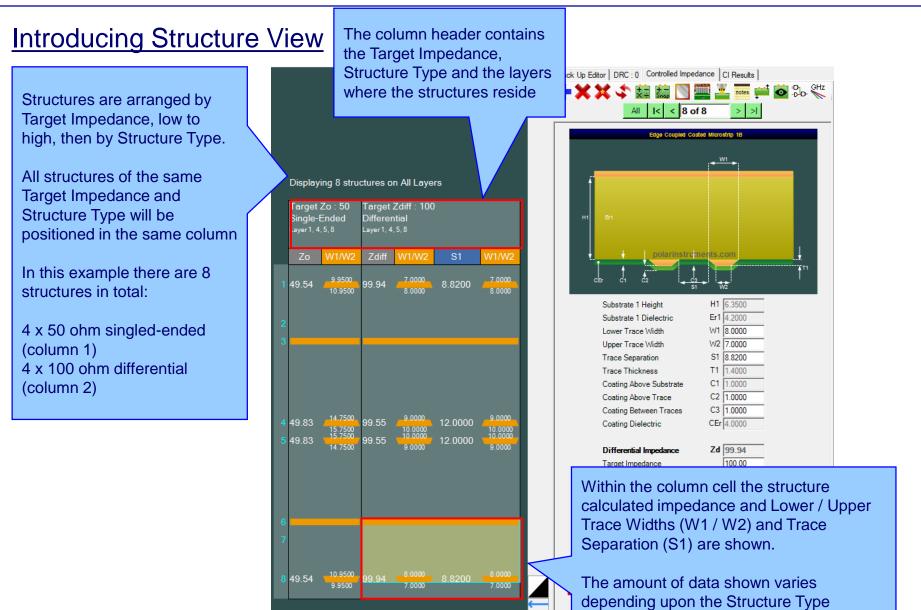
These slides are arranged in a "newest first" format. A slide containing the version number and release date precedes information detailing the new features contained in each release.

If you would like to have a web-based demonstration please contact your local Polar office, details are shown on the last slide of this presentation.


Please note: the Speedstack units have been set to Mils in the following screen grabs

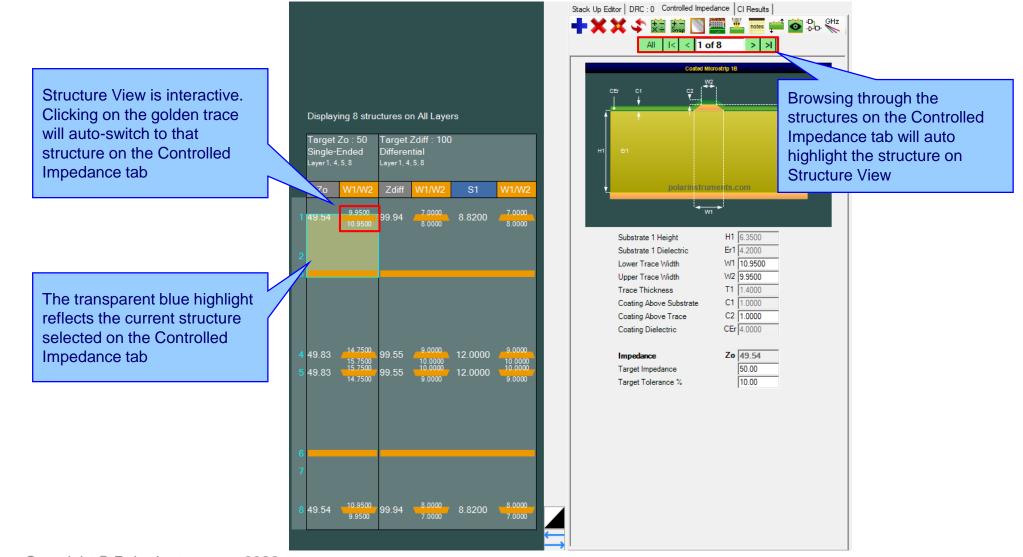
Speedstack v22.09.01 (September 2022)

Speedstack 2021 - 2022 Introduction


polarinstruments.com

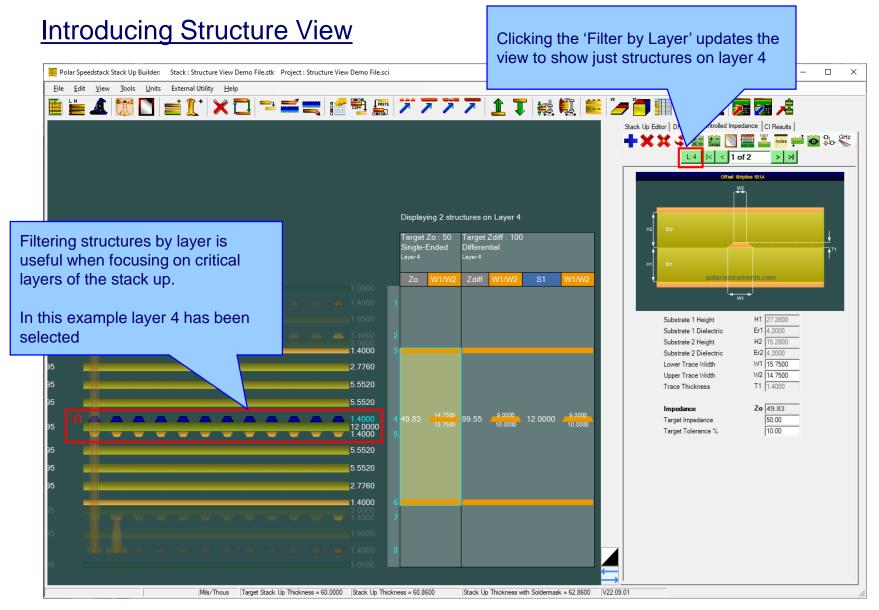
Copyright © Polar Instruments 2022

4

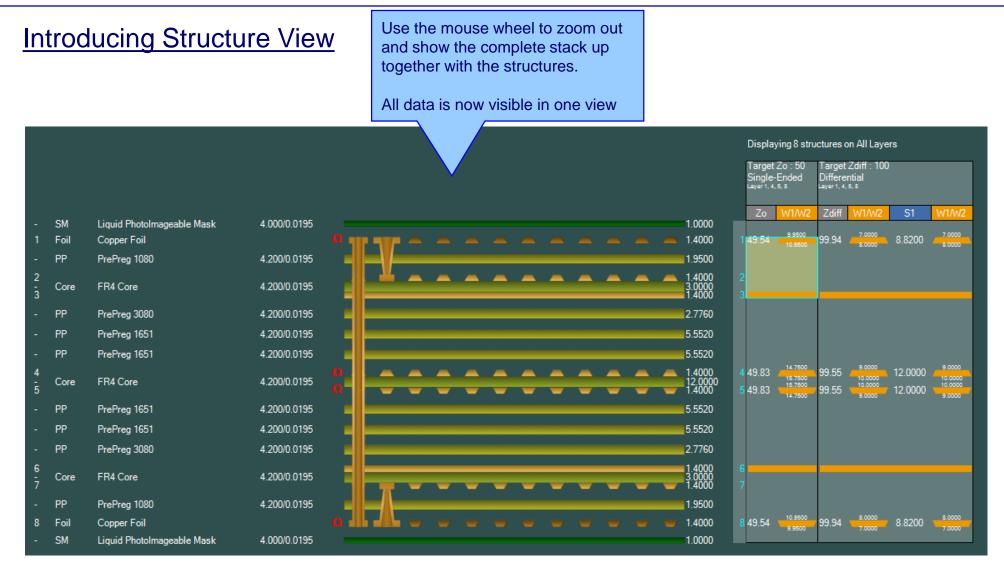


5

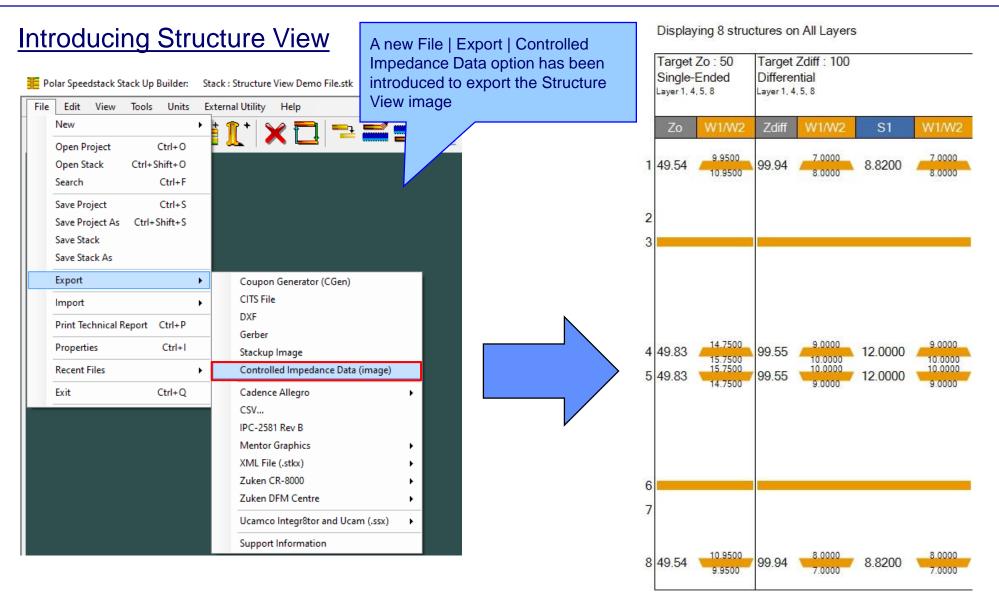
Introducing Structure View

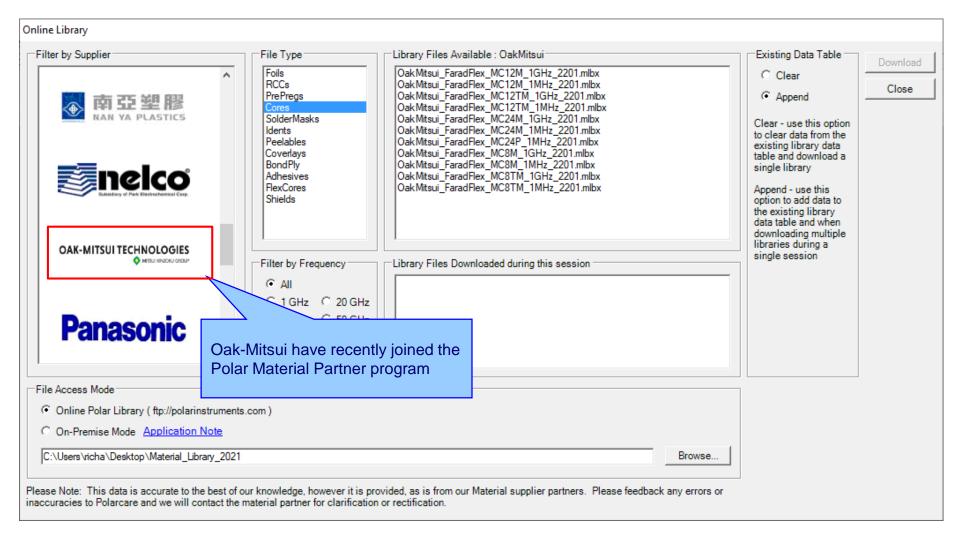


6



7


Speedstack 2021 - 2022 Introduction



Copyright © Polar Instruments 2022

9

Online Library enhancements

10

Speedstack v22.07.20 (July 2022)

Introducing Grid View

Grid View presents the current stack up in an editable data grid form to allow for easy editing of multiple materials from a single dialog

\Box \times

Grid View						of multiple materials from	a single d	lalog	
Stack Up Collection Index	Material Class	Material Element	Electrical Layer	Material Layer Type ID	Layer Name	Description	Processed Thickness	Dielectric Constant	Loss Tangent
0	CSTSolderMask	Mask		SM		Liquid PhotoImageable Mask	1.0000	4.0000	0.019
1	CSTFoil	Copper	1	Foil	Тор	Copper Foil	1.4000		
2	CSTPrePreg	Dielectric		PP		PrePreg 1080	1.9500	4.2000	0.019
3	CSTCore	UpperCopper	2		Inner 2		1.4000		
3	CSTCore	Dielectric		Core		FR4 Core	3.0000	4.2000	0.019
3	CSTCore	LowerCopper	3		Inner 3		1.4000		
4	CSTPrePreg	Dielectric		PP		PrePreg 3080	2.7760	4.2000	0.019
5	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.019
6	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.019
7	CSTCore	UpperCopper	4		Inner 4		1.4000		
7	CSTCore	Dielectric		Core		FR4 Core	12.0000	4.2000	0.019
7	CSTCore	LowerCopper	5		Inner 5		1.4000		
8	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.019
9	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.019
10	CSTPrePreg	Dielectric				PrePreg 3080	2.7760	4.2000	0.019
11	CSTCore	UpperCoppe			Inner 6		1.4000		
	allows for q	uick oditi	ng of kov	v stack		FR4 Core	3.0000	4.2000	0.019
			• •		Inner 7		1.4000		
	tion such a					PrePreg 1080	1.9500	4.2000	0.019
	Thickness	Dielectri	c Consta	int and	Bottom	Copper Foil	1.4000		
s Tange	ent.					Liquid PhotoImageable Mask	1.0000	4.0000	0.019
stack ι	up data fror	n Grid Vi	ew can a	llso be	/ then be edited with Excel				1
	icrosoft Exe aste function		the Grid	View	ent columns are editable, other col IderMask.MaskThickness, Cover	ay.		Apply	y Can
y anu p	aste iuncli	5115				Changes in Grid View can be			

design

saved back to the original stack up

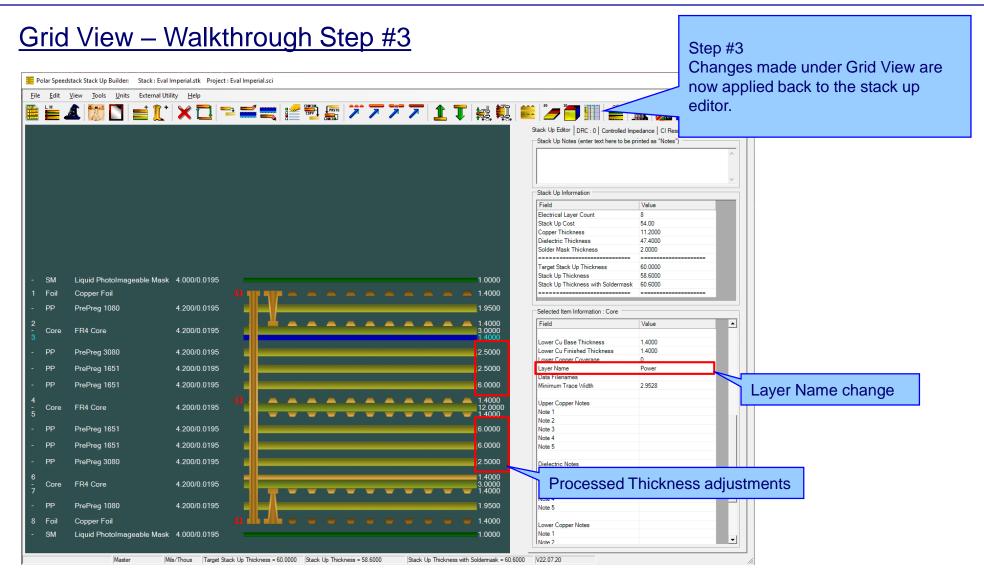
Introducing Grid View

tack Up follection ndex	Material Class	Material Element	Electrical Layer	Mate Type	some fields are le	o preserve stack integrity – ocked.	Processed Thickness	Dielectric Constant	Loss Tangent
	CSTSolderMask	Mask		SM			1.0000	4.0000	0.0195
1	CSTFoil	Copper	1	Foil			1.4000		
2	CSTPrePreg	Dielectric		PP			1.9500	4.2000	0.0195
3	CSTCore	UpperCopper	2		miler 2		1.4000		
3	CSTCore	Dielectric		Core		FR4 Core	3.0000	4.2000	0.0195
3	CSTCore	LowerCopper	3		Inner 3		1.4000		
4	CSTPrePreg	Dielectric		PP		PrePreg 3080	2.7760	4.2000	0.0195
5	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.0195
6	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.0195
7	CSTCore	UpperCopper	4		Inner 4		1.4000		
7	CSTCore	Dielectric		Core		FR4 Core	12.0000	4.2000	0.0195
7	CSTCore	LowerCopper	5		Inner 5		1.4000		
8	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.0195
9	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.0195
10	CSTPrePreg	Dielectric		PP		PrePreg 3080	2.7760	4.2000	0.0195
11	CSTCore	UpperCopper	6		Inner 6		1.4000		
11	CSTCore	Dielectric		Core		FR4 Core	3.0000	4.2000	0.0195
11	CSTCore	LowerCopper	7		Inner 7		1.4000		
12	CSTPrePreg	Dielectric		PP		PrePreg 1080	1.9500	4.2000	0.0195
13	CSTFoil	Copper		Foil	Bottom	Copper Foil	1.4000		
						Liquid PhotoImageable Mask	1.0000	4.0000	0.0195

13

l View						1	. Key information for the whole stack up can be edited	from a		- 0	J
tack Up		Material	Electrical	Material Layer		2	single dialog / screen If changes to the original stack up design are made b	v the	ctric		_
ollection dex	Material Class	Element	Layer	Type ID	Lay		fabricator during the manufacturing stage, these can	·	tant	Loss Tange	ent
0	CSTSolderMask	Mask		SM			quickly evaluated by updating the Processed Thickne		4.0000	0.0	19
1	CSTFoil	Copper	1	Foil	Тор		Dielectric Constant and Loss Tangent cells. The impa				
2	CSTPrePreg	Dielectric		PP			these changes on stack up thickness, controlled impe		4.2000	0.0	19
3	CSTCore	UpperCopper	2		Inne						
3	CSTCore	Dielectric		Core			and insertion loss calculations can then be quickly ev		4.2000	0.0	19
3	CSTCore	LowerCopper	3		Inne		· · · · · · · · · · · · · · · · · · ·				
4	CSTPrePreg	Dielectric		PP		4	 Layer Names can be quickly assigned to electrical lay 	yers	4.2000	0.0	19
5	CSTPrePreg	Dielectric		PP					4.2000	0.0	19
6	CSTPrePreg	Dielectric		PP				5.5520	4.2000	0.0	19
7	CSTCore	UpperCopper	4		Inne	er 4		1.4000			
7	CSTCore	Dielectric		Core			FR4 Core	12.0000	4.2000	0.0	19
7	CSTCore	LowerCopper	5		Inne	er 5		1.4000			
8	CSTPrePreg	Dielectric		PP			PrePreg 1651	5.5520	4.2000		
9	CSTPrePreg	Dielectric		PP			PrePreg 1651	5.5520	4.2000		
10	CSTPrePreg	Dielectric		PP			PrePreg 3080	2.7760	4.2000	0.0	19
11	CSTCore	UpperCopper	6		Inne	er 6		1.4000			
11	CSTCore	Dielectric		Core			FR4 Core	3.0000	4.2000	0.0	19
11	CSTCore	LowerCopper	7		Inne	er 7		1.4000			
12	CSTPrePreg	Dielectric		PP			PrePreg 1080	1.9500	4.2000	0.0	19
13	CSTFoil	Copper	8	Foil	Botto	om	Copper Foil	1.4000			
14	CSTSolderMask	Mask		SM			Liquid PhotoImageable Mask	1.0000	4.0000	0.0	19

14


16

View							cells are a ave been c		
ack Up ollection dex	Material Class	Material Element	Electrical Layer	Material Layer Type ID	Layer Name	Description	ed Thicknes	-	
0	CSTSolderMask	Mask		SM		Liquid PhotoImageable Mask	1.0000	4.0000	0.019
1	CSTFoil	Copper	1	Foil	Тор	Copper Foil	1.4000		
2	CSTPrePreg	Dielectric		PP		PrePreg 1080	1.9500	4.2000	0.019
3	CSTCore	UpperCopper	2		Inner 2		1.4000		
3	CSTCore	Dielectric		Core		FR4 Core	3.0000	4.2000	0.019
3	CSTCore	LowerCopper	3		Power		1.4000		
4	CSTPrePreg	Dielectric		PP		PrePreg 3080	2.5000	4.2000	0.019
5	CSTPrePreg	Dielectric		PP		PrePreg 1651	2.5000	4.2000	0.019
6	CSTPrePreg	Dielectric		PP		PrePreg 1651	6.0000	4.2000	0.019
7	CSTCore	UpperCopper	4		Inner 4		1.4000		
7	CSTCore	Dielectric		Core		FR4 Core	12.0000	4.2000	0.019
7	CSTCore	LowerCopper	5		Inner 5		1.4000		
8	CSTPrePreg	Dielectric		PP		PrePreg 1651	6.0000	4.2000	0.019
9	CSTPrePreg	Dielectric		PP		PrePreg 1651	6.0000	4.2000	0.019
10	CSTPrePreg	Dielectric		PP		PrePreg 3080	2.5000	4.2000	0.019
11	CSTCore	UpperCopper	6		Ground		1.4000		
11	CSTCore	Dielectric		Core		FR4 Core	3.0000	4.2000	0.019
11	CSTCore	LowerCopper	7		Inner 7		1.4000		
12	CSTPrePreg	Dielectric		PP	-	PrePreg 1080	1.9500	4.2000	0.019
13	CSTFoil	Copper	8	Foil	Bottom	Copper Foil	1.4000		
14	CSTSolderMask	Mask		SM		Liquid PhotoImageable Mask	1.0000	4.0000	0.019

changes back to the stack up editor

Copyright © Polar Instruments 2022

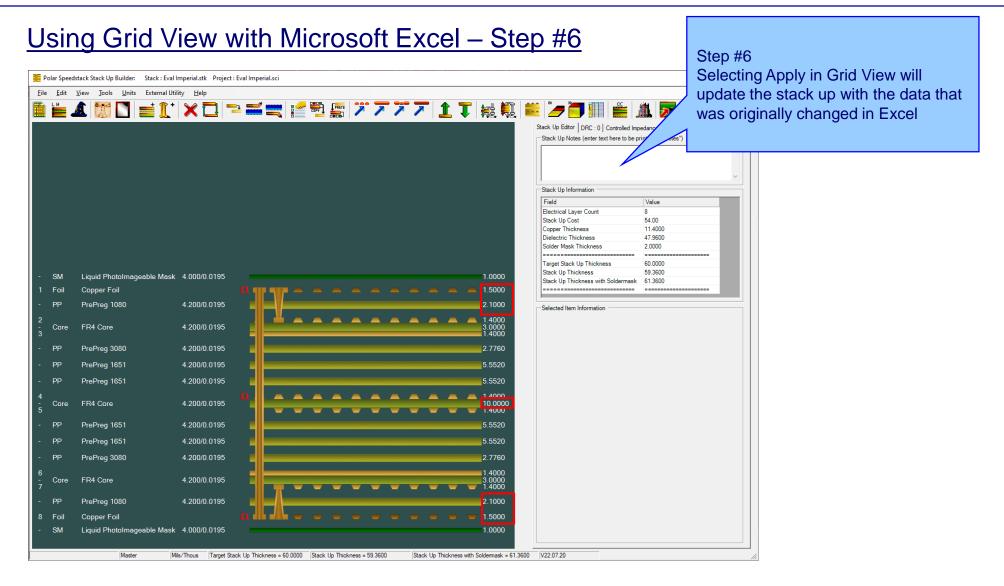
Polar Speeds	tack Stack Up Bui	lder: Stack : Eva Units External U	al Imperial.stk Jtility Help	Project : Eval	Imperial.sci					Controlled Impeda	ince CI Resu	Step #1 From within Grid View use the right- click menu and select the Copy to Clipboard option.
	Grid View									-	- 0	×
	Stack Up Collection	Material Class	Material Element	Electrical Layer	Material Laye Type ID	r Layer Name	Description		Processed Thickness	Dielectric Constant	Loss Tangent	
	Index 0	CSTSolderMask	Mask		SM		Liquid Photolmageable	Mask	1.0000	4.0000	0.0195	
	1	CSTFoil	Copper	1	Foil	Тор	Copper Foil		1.4000			
	2	CSTPrePreg	Dielectric		PP		PrePreg 1080		1.9500	4.2000	0.0195	
	3	CSTCore	UpperCopper	2		Inner 2			1.4000			
	3	CSTCore CSTCore	Dielectric LowerCopper	3	Core	Inner 3	FR4 Core		3.0000 1.4000	4.2000	0.0195	
014	4	CSTPrePreg	Dielectric	5	PP		PrePreg 3080		2.7760	4.2000	0.0195	
- SM 1 Foil	5	CSTPrePreg	Dielectric		PP		PrePreg 1651		5.5520	4.2000	0.0195	
	6	CSTPrePreg	Dielectric		PP		PrePreg 1651	Copy to Clipboard (for Excel)	5.5520	4.2000	0.0195	
- PP	7	CSTCore	UpperCopper	4		Inner 4		Paste from Clipboard (from Excel)	1.4000			
2 - Core	7	CSTCore CSTCore	Dielectric	5	Core	Inner 5	FR4 Core		12.0000 1.4000	4.2000	0.0195	
3	8	CSTPrePreg	LowerCopper Dielectric	5	PP	inner 5	PrePreg 1651		5.5520	4.2000	0.0195	
- PP	9	CSTPrePreg	Dielectric		PP		PrePreg 1651		5.5520	4.2000	0.0195	
- PP	10	CSTPrePreg	Dielectric		PP		PrePreg 3080		2.7760	4.2000	0.0195	
	11	CSTCore	UpperCopper	6		Inner 6			1.4000			
- PP	11	CSTCore	Dielectric				FR4 Core		3.0000	4.2000	0.0195	
4 - Core	11	CSTCore	Lower			Inner 7			1.4000		0.0405	
				-		Bottom	PrePreg 1080 Copper Foil		1.9500 1.4000	4.2000	0.0195	
						Bottom	Liquid Photolmageable	Mask	1.4000	4.0000	0.0195	
The Copy												
contents	of Grid	View t	o be c	basse	d to	ay then be edited with E	Excel				1	
						gent columns are edita	able, other columns are read-only			Apply	Cancel	el l
Excel, ma						oldermask.MaskThick	ness, Coverlay.FinishedThickness	3.0000				
copying e	existing	data fi	rom ot	ther				1.4000				
spreadsh	-							1.9500				
•			-	-								
power of	Excel,	then pa	aste th	ne				1.0000				
resultant	Excel	data ba	ick to	Grid								
View.						000 Stack Up Thick	ness = 60.8600 Stack Up T	hickness with Soldermask = 62.8600 V22.07.2	20			
view.												

Home File Home Copy - Paste Format Pair	Insert Page Layout Fc	ormulas Data	≡ 💼 ॐr 🐉 Wrap Text G		Book1 - Excel ? Tell me what you want to do	ormal Bad	Good Check Cell	Оре		xcel a		kshee	the clipboard t
Clipboard	5 Font	ra	Alignment 🕞	Number	G	Styles		Cells		E	diting	A A	
A1 - :	× √ f _* Stack	Up Collection Ind	ex									~	
A	В	С	D E	F	G	н	I J	к	L	м	N	0	
1 Stack Up Collecti	on Index Material Class		Electrical Layer Material Layer Type ID	Laver Nam	e Description	Processed Thickness Diele	ctric Constant Loss Tangen	t					
2	0 CSTSolderMask		SM		Liquid PhotoImageable Mask	1	4 0.019						1
3	1 CSTFoil	Copper	1 Foil	Тор	Copper Foil	1.4							1
4	2 CSTPrePreg	Dielectric	PP		PrePreg 1080	1.95	4.2 0.019	5					
5	3 CSTCore	UpperCopper	2	Inner 2		1.4							
6		Dielectric	Core		FR4 Core	3	4.2 0.019	5					
7	3 CSTCore	LowerCopper	3	Inner 3		1.4							
8	4 CSTPrePreg	Dielectric	PP		PrePreg 3080	2.776	4.2 0.019	5					
9	5 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2 0.019	5					
10	6 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2 0.019	5					
11	7 CSTCore	UpperCopper	4	Inner 4		1.4							
12	7 CSTCore	Dielectric	Core		FR4 Core	12	4.2 0.019	5					
13	7 CSTCore	LowerCopper	5	Inner 5		1.4							
14	8 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2 0.019	5					
15	9 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2 0.019	5					
16	10 CSTPrePreg	Dielectric	PP		PrePreg 3080	2.776	4.2 0.019	5					
17	11 CSTCore	UpperCopper	6	Inner 6		1.4							
18	11 CSTCore	Dielectric	Core		FR4 Core	3	4.2 0.019	5					
19	11 CSTCore	LowerCopper	7	Inner 7		1.4							1
20	12 CSTPrePreg	Dielectric	PP		PrePreg 1080	1.95	4.2 0.019	5					1
21	13 CSTFoil	Copper	8 Foil	Bottom	Copper Foil	1.4							1
22	14 CSTSolderMask	Mask	SM		Liquid PhotoImageable Mask	1	4 0.019	5					1
23								1					1
24													1
25													1
26													1
27													1
28													1
29													1
30													1
31													1
32													/
33													1
34													
She	eet1 (+					: •						Þ	
Ready 🔠						Average: 3.951	493421 Count: 166 Sum: 300	.3135		─ -	1	+ 100%	

<u>Usin</u>	<u>g Grid V</u>	iew w	/ith №	licroso	oft E	<u>Excel – S</u>	<u>tep #3</u>			Step						
ଅ ୭୦ ଟ	~ -				-	Book1 - Excel				-					ess cells	
File Home	e Insert Page Layout Fo	ormulas Data	Review View	Developer Help	Team Ç	⁹ Tell me what you want to do				nign	liign	lea li	rea	nave	been changed	
🚔 🔏 Cut	Calibri + 11	- A A = =	=	Wrap Text G	eneral	- 🛃 💷 🖪	ormal Bad	Good								
Paste Copy	•					€0 00 Conditional Format as N										
🗸 🚿 Forma	t Painter B I U -			Merge & Center 👻 🍟	* % *	Formatting + Table +	calculation	check cen	- " Ļ	÷	· ·	Ciear	Filter * S	elect *		
Clipboard	ra Font	G.	Alignment	t G	Number	r <u>s</u>	Styles			Cells		E	diting	~		
112 -	: × ✓ fx 4.2													~		
	A B			-		G	н			K						
_		C Material Element	D Electrical Lavor	E Material Layer Type ID	F		Processed Thickness Diel	ostrie Constant Loss Ta	ngont	К	L	м	N	0		
2	0 CSTSolderMask			SM	Layer Nam	Liquid PhotoImageable Mask	1		0.0195							
3	1 CSTFoil	Copper		Foil	Тор	Copper Foil	1.5		0.0155							
4	2 CSTPrePreg	Dielectric		PP		PrePreg 1080	2.1	4.2	0.0195							
5	3 CSTCore	UpperCopper	2		Inner 2		1.4		010255							
6	3 CSTCore	Dielectric	_	Core		FR4 Core	3	4.2	0.0195							
7	3 CSTCore	LowerCopper	3		Inner 3		1.4									
8	4 CSTPrePreg	Dielectric		PP		PrePreg 3080	2.776	4.2	0.0195							
9	5 CSTPrePreg	Dielectric		PP		PrePreg 1651	5.552	4.2	0.0195							
10	6 CSTPrePreg	Dielectric		РР		PrePreg 1651	5.552	4.2	0.0195							
11	7 CSTCore	UpperCopper	4		Inner 4		1.4									
12	7 CSTCore	Dielectric		Core		FR4 Core	10	4.2	0.0195							
13	7 CSTCore	LowerCopper	5		Inner 5		1.4									
14	8 CSTPrePreg	Dielectric		РР		PrePreg 1651	5.552	4.2	0.0195							
15	9 CSTPrePreg	Dielectric		PP		PrePreg 1651	5.552	4.2	0.0195							
16	10 CSTPrePreg	Dielectric		PP		PrePreg 3080	2.776	4.2	0.0195							
17	11 CSTCore	UpperCopper	6		Inner 6		1.4									
18	11 CSTCore	Dielectric		Core		FR4 Core	3	4.2	0.0195							
19	11 CSTCore	LowerCopper	7		Inner 7		1.4									
20	12 CSTPrePreg	Dielectric		PP		PrePreg 1080	2.1	4.2	0.0195							
21	13 CSTFoil	Copper		Foil	Bottom	Copper Foil	1.5									
22 23	14 CSTSolderMask	Mask		SM		Liquid PhotoImageable Mask	1	4	0.0195							
23																
25																
26																
27	`															
28			OTF In	order to p	reser	ve stack										
29																
30		l in	tegrity, n	naterials s	should	l not be										
31																
32		ac	aded of I	removed a	at this	step.										
33			dd/remo	ve of mate	ariale	needs to be										
34	_															
	Sheet1 +	DE	erformed	in the Sp	eedst	ack editor to	÷ •							▶		
Ready										===		— —	1	+ 100%		
		al	low valid	lation to b	e per	formed.										

<u>Using Grid View with Microsoft Excel – Step #4</u>

Step #4 Once the Excel changes are complete select the range of cells representing the whole stack up data and select

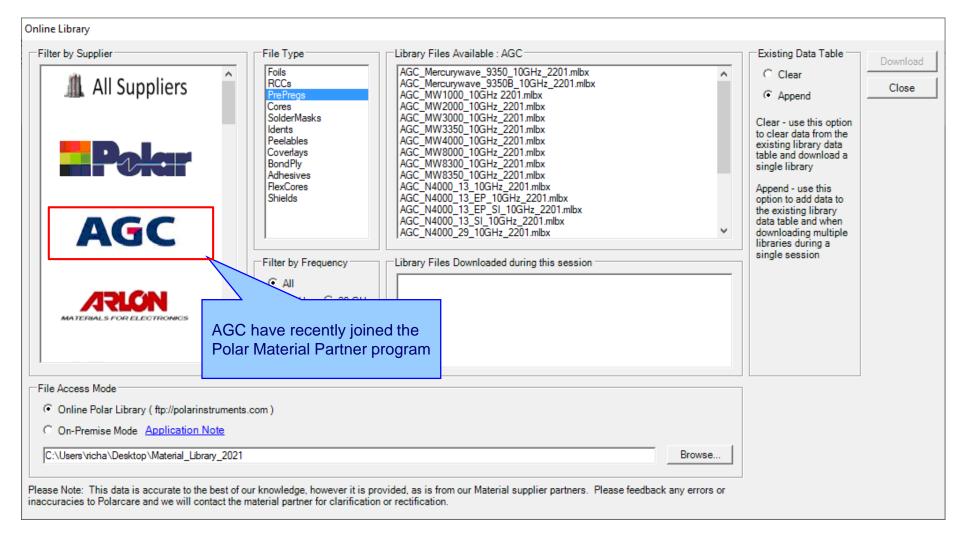

Copy 🔹			= = =	🗄 Merge & Center	• 🚰 • % •	Conditional Format as Formatting * Table *	eutral Calculation	Check Cell		Сор		Clear	Filter * S	elect •
lipboard 🕞	Font	5a	Alignme	nt	Number	Г <u>я</u>	Styles			Cells		1	Editing	
¥ : ×	√ f _× Stack	c C		E	E	G	Н	1	J	к	L	м	N	0
	ex Material Class						Processed Thickness Diele			ĸ		IVI	IN	0
	0 CSTSolderMask			SM		Liquid PhotoImageable Mask	1	4	0.0195					
	1 CSTFoil	Copper	1	Foil	Тор	Copper Foil	1.5							
	2 CSTPrePreg	Dielectric		PP		PrePreg 1080	2.1	4.2	0.0195					
	3 CSTCore	UpperCopper	2		Inner 2		1.4							
	3 CSTCore	Dielectric		Core		FR4 Core	3	4.2	0.0195					
	3 CSTCore	LowerCopper	3		Inner 3		1.4							
	4 CSTPrePreg	Dielectric		PP		PrePreg 3080	2.776	4.2	0.0195					
	5 CSTPrePreg	Dielectric		PP		PrePreg 1651	5.552	4.2	0.0195					
	6 CSTPrePreg	Dielectric		PP		PrePreg 1651	5.552	4.2	0.0195					
		UpperCopper	4		Inner 4		1.4							
		Dielectric		Core		FR4 Core	10	4.2	0.0195					
		LowerCopper	5		Inner 5		1.4							
		Dielectric		PP		PrePreg 1651	5.552	4.2	0.0195					
		Dielectric		PP		PrePreg 1651	5.552	4.2	0.0195					
		Dielectric		PP		PrePreg 3080	2.776	4.2	0.0195					
		UpperCopper	6		Inner 6		1.4							
		Dielectric		Core		FR4 Core	3	4.2	0.0195					
		LowerCopper	7		Inner 7		1.4							
		Dielectric		PP		PrePreg 1080	2.1	4.2	0.0195					
	13 CSTFoil	Copper	8	Foil	Bottom	Copper Foil	1.5		0.0105					
	14 CSTSolderMask	Mask		SM		Liquid PhotoImageable Mask	1	4	0.0195					

View							menu Paste and Grid Vie		·	
ack Up lection lex	Material Class	Material Element	Electrical Layer	Material Layer Type ID	Layer Name	Description	data from Ex now matches		tice how	the d
0	CSTSolderMask	Mask		SM		Liquid PhotoImageable Mask		1.0000	4.0000	0.0195
1	CSTFoil	Copper	1	Foil	Тор	Copper Foil		1.5000		
2	CSTPrePreg	Dielectric		PP		PrePreg 1080		2.1000	4.2000	0.0195
3	CSTCore	UpperCopper	2		Inner 2			1.4000		
3	CSTCore	Dielectric		Core		FR4 Core		3.0000	4.2000	0.0195
3	CSTCore	LowerCopper	3		Inner 3			1.4000		
4	CSTPrePreg	Dielectric		PP		PrePreg 3080		2.7760	4.2000	0.019
5	CSTPrePreg	Dielectric		PP		Copy to Clipboard (for Excel)		5.5520	4.2000	0.019
6	CSTPrePreg	Dielectric		PP		Paste from Clipboard (from Excel)		5.5520	4.2000	0.019
7	CSTCore	UpperCopper	4		Inner 4	Paste from Clipboard (from Excel)		1.4000		
7	CSTCore	Dielectric		Core		FR4 Core		10.0000	4.2000	0.019
7	CSTCore	LowerCopper	5		Inner 5			1.4000		
8	CSTPrePreg	Dielectric		PP		PrePreg 1651		5.5520	4.2000	0.019
9	CSTPrePreg	Dielectric		PP		PrePreg 1651		5.5520	4.2000	0.019
10	CSTPrePreg	Dielectric		PP		PrePreg 3080		2.7760	4.2000	0.0195
11	CSTCore	UpperCopper	6		Inner 6			1.4000		
11	CSTCore	Dielectric		Core		FR4 Core		3.0000	4.2000	0.0198
11	CSTCore	LowerCopper	7		Inner 7			1.4000		
12	CSTPrePreg	Dielectric		PP		PrePreg 1080		2.1000	4.2000	0.019
13	CSTFoil	Copper	8	Foil	Bottom	Copper Foil		1.5000		
14	CSTSolderMask	Mask		SM		Liquid PhotoImageable Mask		1.0000	4.0000	0.0195

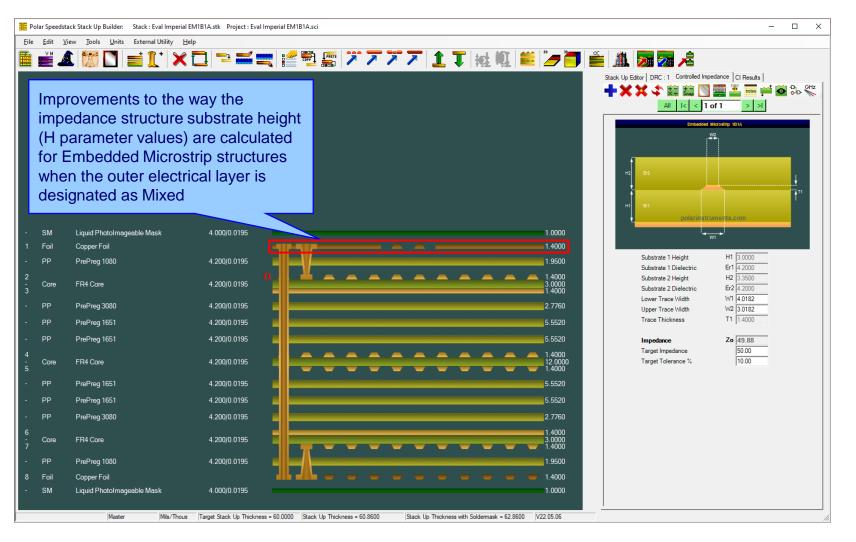
22

23

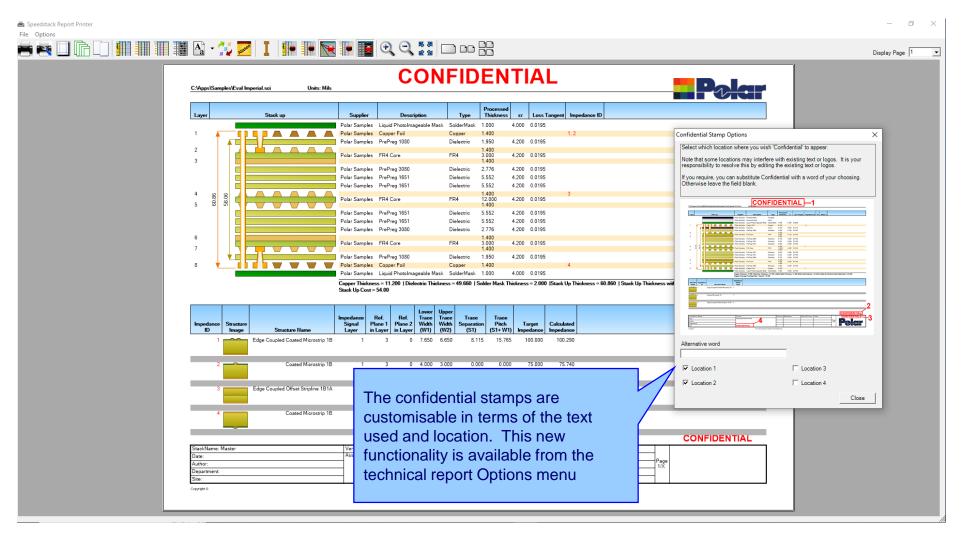
Other enhancements


- Stack Up Notes user interface improvements
- The Tools | Options | Structure Defaults | Separation Region Dielectric (REr) now supports double data types. Previously, it only supported integers

Speedstack v22.05.06 (May 2022)

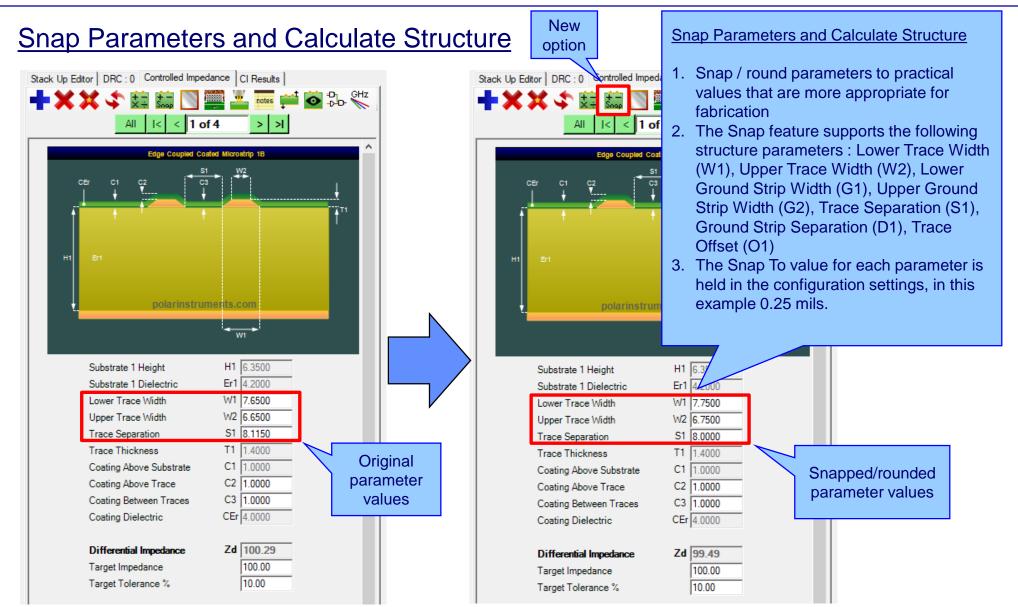

Online Library enhancements

26



Embedded Microstrip structure enhancements

New Confidential Stamp options added to the technical report



Speedstack v22.01.01 (January 2022)

30

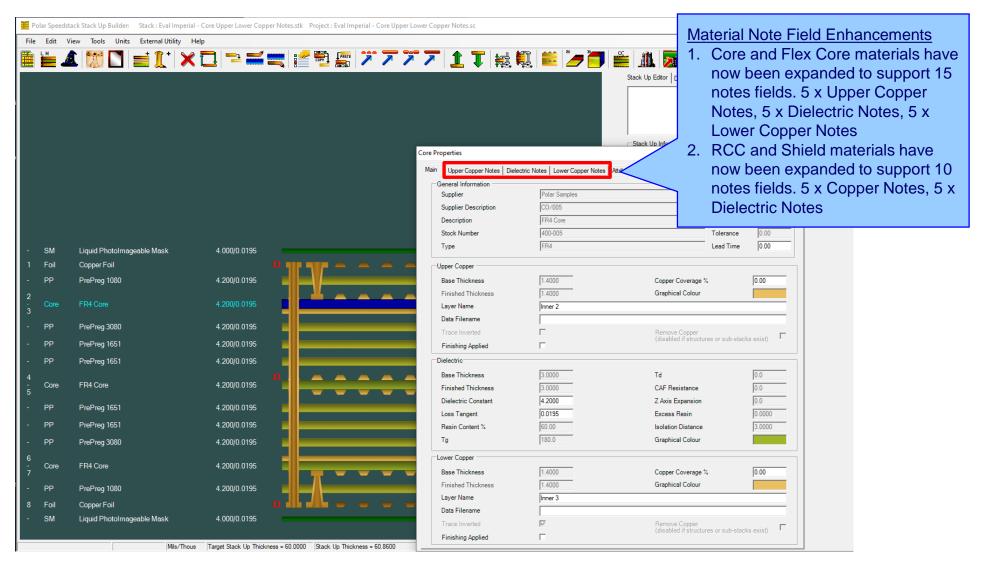
Copyright © Polar Instruments 2022

Snap Parameters and Calculate Structure

Configuration Options				×
External Utilities Rebuild and Calculate S General Structure Defaults Licensing		Goal Seeking	User (CITS Test Colours Miscellaneous Hatch Defaults
Structures	Default	Snap To	B	Board Thickness
Lower Trace Width (W1)	10.0000	0.2500		Board Thickness 60.0000
Upper Trace Width (W2)	9.0000	0.2500		Plus % 10
Lower Ground Strip Width (G1)	100.0000	0.2500		Minus % 10
Upper Ground Strip Width (G2)	99.0000	0.2500		Drilling
Trace Separation (S1)	10.0000	0.2500		
Ground Strip Separation (D1)	10.0000	0.2500		Minimum Hole Size 20.0000
Trace Offset (O1)	0.0000	0.2500		
Separation Region Dielectric (REr)	4			
				The Snap To value for each parameter is held in the configuration settings, accessible from the Tools Options Structure Defaults tab.
				Although all Snap To values shown here are set to 0.25 mils, each parameter can support a different value

Material Library Enhancements

V		\Polar\Speedstack\Samples\Sp							– 🗆 X
		14 II- IL II +							
oils	Prepregs RCCs	Cores Solder Masks Ident In	ks Peelable Masks Coverlays Bond Ply Adhesive Fle:	xible Cores Shields					
	Supplier	Supplier Description	Description	Stock Number	Dielectric Base Thickness	Dielectric Finished Thickness	Tolerance	Dielectric Constant	Loss Tangent
	Polar Samples	PP/001	PrePreg 1080	300-001	3	3	0	4.2	0.0195
	Polar Samples	PP/002	PrePreg 3080	300-002	3	3	0	4.2	0.0195
	Polar Samples	PP/003	PrePreg 3113	300-003	4	4	10	4.2	0.0195
	Polar Samples	PP/004	PrePreg 1651	300-004	6	6	10	4.2	0.0195
	Polar Samples	PP/005	PrePreg 7628	300-005	7.9	7.9	10	4.2	0.0195
	PolarSamples	PP/005	PrePreg 106	300-005	2	2	10	4.2	0.0195
							tolerand Previou would p	e of 0%. s versions o	electric thickne of Speedstack iser to enter a 0%



Speedstack v21.11.01 (November 2021)

34

Material Note Field Enhancements – improvements to stack up documentation

<u>Material Note Field Enhancements – improvements to stack up documentation</u>

War Decide Cooper Notes Reduce Net Important information about the copper surfaces for a Core and Flex Core material. Net 4 Important information about the copper roughness and plating fabrication information can be specified	Core Properties	
Note 1 Roughness: Very-low profile (VLP) Image: Close important information about the copper surfaces for a Core and Flex Core material. Note 3 Image: Close Image: Close Image: Close Note 3 Image: Close Image: Close Image: Close Note 4 Image: Close Image: Close Image: Close Note 4 Image: Close Image: Close Image: Close Note 5 Image: Close Image: Close Image: Close Image: Close Image: Close Image: Close Image: Close Note 3 Image: Close Image: Close Image: Close Image: Close Note 4 Image: Close Image: Close Image: Close Image: Close Image: Close Note 4 Image: Close Image: Close Image: Close Image: Close Image: Close Image: Close Close Note 4 Image: Close Image: Close Image: Close Image: Close For instance, copper roughness and plating fabrication information can be		
Note 2 Copper surfaces for a Core and Flex Core material. Note 3 For instance, copper roughness and plating fabrication information can be		
Note 3 Core material. Note 4 For instance, copper roughness and plating fabrication information can be	Note 1 Roughness: Very-low profile (VLP)	
Note 3 Image: Note 3 Note 4 Image: Source and the sourc	Note 2	
Note 4 For instance, copper roughness and plating fabrication information can be		Core material.
Note 5 plating fabrication information can be	Note 3	
	Note 4	For instance, copper roughness and
	Note 5	plating fabrication information can be
		specified

35

<u>Material Note Field Enhancements – improvements to stack up documentation</u>

Core Properties Main Upper Copper Note Notes Note 1 Note 2 Note 3 Note 4 Note 4	s Dielectric Notes Lower Copper Notes Attributes Attributes Attributes	Dielectric Notes are useful for specifying IPC-4101 slash sheet categories, glass weave information (spread glass) and other important information regarding the dielectric region of the core.
Note 5		The existing five Notes fields from previous versions of Speedstack will be allocated as Dielectric Notes.

36

Material Note Field Enhancements – improvements to stack up documentation

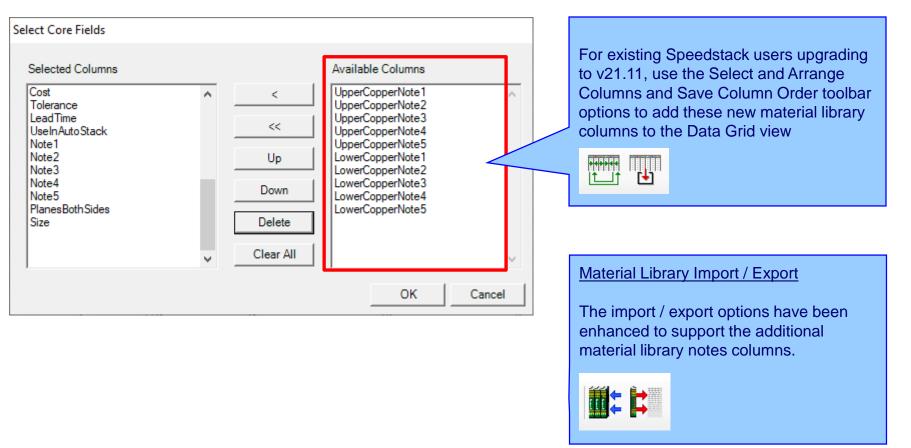
A A 1.400	0
1.950	0
1.400 3.000 1.400	0 0 0
2.776	0
5.552	0
5.552	0
1.400 12.00 1.400	00
5.552	0
5.552	0
2.776	0
1.400 3.000 1.400	0
1.950	0
— — — 1.400	0
1.000	0
ess with Soldermask = 62.8600 V21.11.0	1

Field	Value
Upper Copper Notes	
Note 1	Roughness: Very-low profile
Note 2	
Note 3	
Note 4	
Note 5	
Dielectric Notes	
Note 1	IPC-4101 /21 /24 /26
Note 2	
Note 3	
Note 4	
Note 5	
Lower Copper Notes	
Note 1	Roughness: Very-low profile
Note 2	
Note 3	
Note 4	
Note 5	
Cost	5
Lead Time	0
Attributes	

When selecting a core / flex core material the Upper Copper, Dielectric and Lower Copper Notes can be confirmed here.

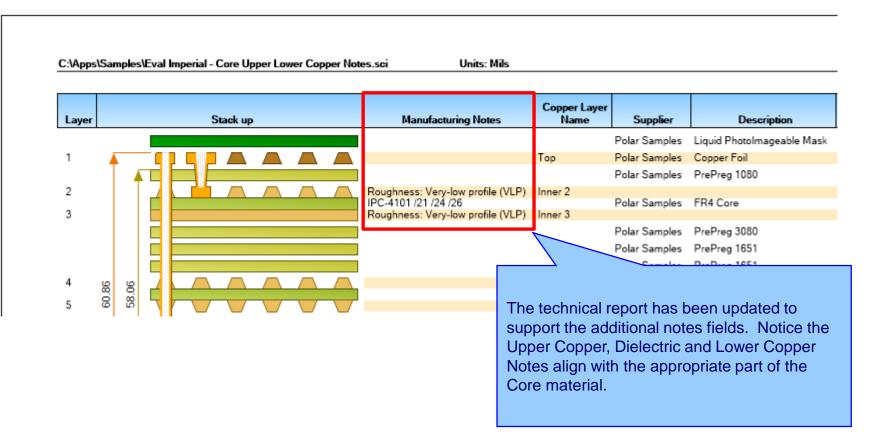
polarinstruments.com

Copyright © Polar Instruments 2022



<u>Material Note Field Enhancements – library enhancements</u>

Review/Edit Cores							
Supplier	Polar Samples	Upper Copper Note	s	Dielectric Notes		Lower Copper Notes	
Supplier Description	CO/005	Note 1	Roughness: Very-low profile (VLP)	Note 1	IPC-4101 /21 /24 /26	Note 1	Roughness: Very-low profile (VLP)
Description	FR4 Core						
Stock Number	400-005						
Туре	FR4	Note 2		Note 2		Note 2	
Base Thickness	3.0000						
Finished Thickness	3.0000						
Dielectric Constant	4.2	Note 3		Note 3		Note 3	
.oss Tangent	0.0195						
Resin Content	60						
resin content Ig	180	 					
g īd	0	Note 4		Note 4		Note 4	
AF Resistance	0	— I					
Axis Expansion	0	— I					
olerance +/-%	10	Note 5		Note 5		Note 5	
	1						
Upper Cu Thickness	1.4000						
ower Cu Thickness	1.4000						
Cost	5						
ead Time	0						
bize	•					The Speedsta	ck material library h
Jse in Auto Stack Planes Both Sides							d to support the ex
aser Drillable						notes fields.	
	1				1		
<u>A</u> dd <u>D</u> elete			<u> </u>	5 of 27 > >>		Notes added t	o the materials in th
						library will auto	
						transferred to	ine stack up.

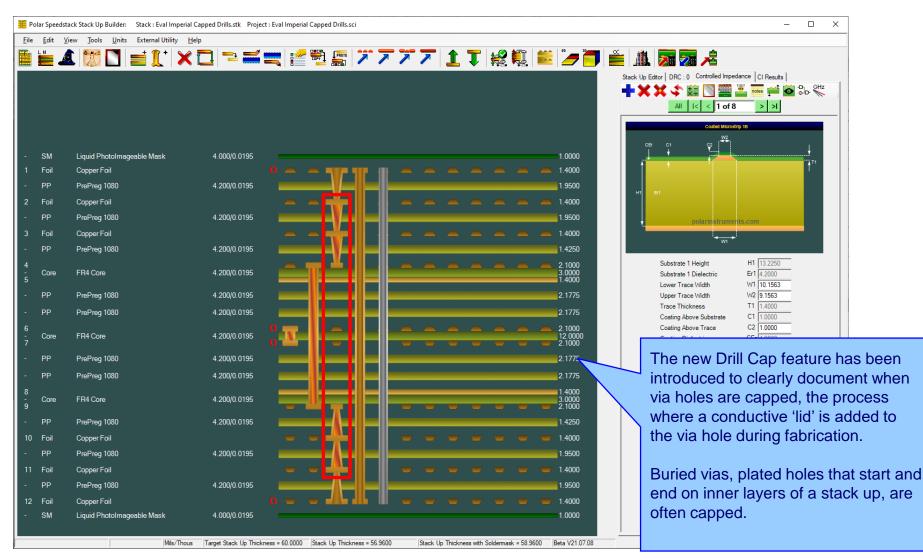


Material Note Field Enhancements – library enhancements

Material Note Field Enhancements – technical report enhancements

Import / Export enhancements

The following Import / Export options have been updated to support the additional material notes properties introduced with Speedstack v21.11.01:

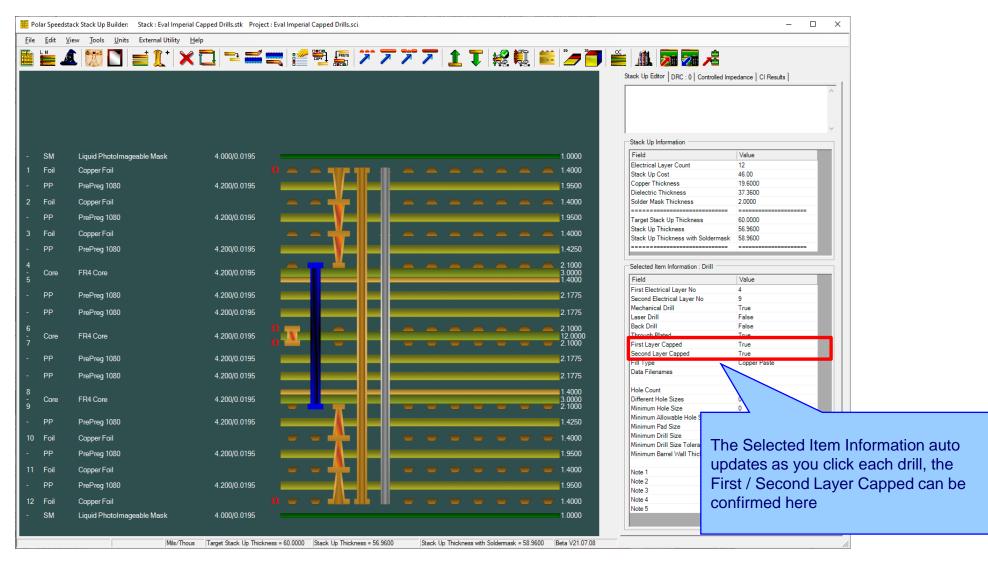

- XML STKX v23.00 and SSX v13.00 import / export options
- CSV export option

Speedstack v21.07.08 (July 2021)

New Drill Cap feature

Drill Cap option – mechanical through plated drills

Drill Properties		×	
Main Notes Electrical Layers Stack Up Column First Electrical Layer Second Electrical Layer No (Bart Layer) Layer No (Bart Layer No (Bart Layer No (Bart Layer)) Second Electrical Layer No (Bart Layer No (Bart Layer)) Second Electrical Layer No (Bart Layer) Second Electrical Layer No (Bart Layer No (Bart Layer) Second Electrical Layer No (Bart Layer) Second Elect		t-Cut Back Drill Must-Not-Cut Layer No	<u>Mechanical</u> For mechanical drills it is possible to have four states: 1.Neither first or second layer capped (default when adding a drill)
Drill Information Fill Type ○ Laser Copper Paste ○ Back Drill Image: First Layer Capped Image: Through Plated Image: First Layer Capped Data Filenames Image: Second Layer Capped	Hole Information Hole Count 0 Different Hole Sizes 0 Minimum Hole Size 0.0000 Minimum Pad Size	Minimum Drill Size 0.0000 Minimum Drill Size Tolerance (Abs) 0.0000 Minimum Barrel Wall Thickness 0.0000	2.First layer capped3.Second layer capped4.Both layers capped
Back Drill Information Minimum Distance From Must-Cut Layer 0.0000 Maximum Distance From Must-Cut Layer 0.0000 Maximum Distance From Must-Cut Layer 0.0000 Maximum Distance From Must-Cut Layer 0.0000 Primary Drill Size 0.0000		Apply Cancel	



Drill Cap option – laser drills

Drill Properties		×	
Main Notes Electrical Layers Stack Up Column First Electrical Layer Second Elec No (Start Layer) Layer No (Electrical Layer) 3 4			Laser For laser drills it is possible to have two states as the Second Layer Capped checkbox is disabled: 1.Not capped (default when adding a
Drill Information ○ Mechanical Fill Type • Laser Copper Paste ○ Back Drill ✓ Through Plated ✓ Through Plated Data Filenames	Hole Information Hole Count Minimum Drill Size 0 0.0000 Different Hole Sizes Minimum Drill Size Tolerance 0 0.0000 Minimum Hole Size Minimum Barrel Wall Thickness 0.0000 0.0000 Minimum Pad Size 0.0000		drill) 2.First layer capped
Back Drill Information Minimum Distance From Must-Cut Layer 0.0000 Maximum Distance From Must-Cut Layer 0.0000 Maximum Distance From Must-Cut Layer Must-Cut Layer 0.0000 Primary Drill Size 0.0000		Cancel	

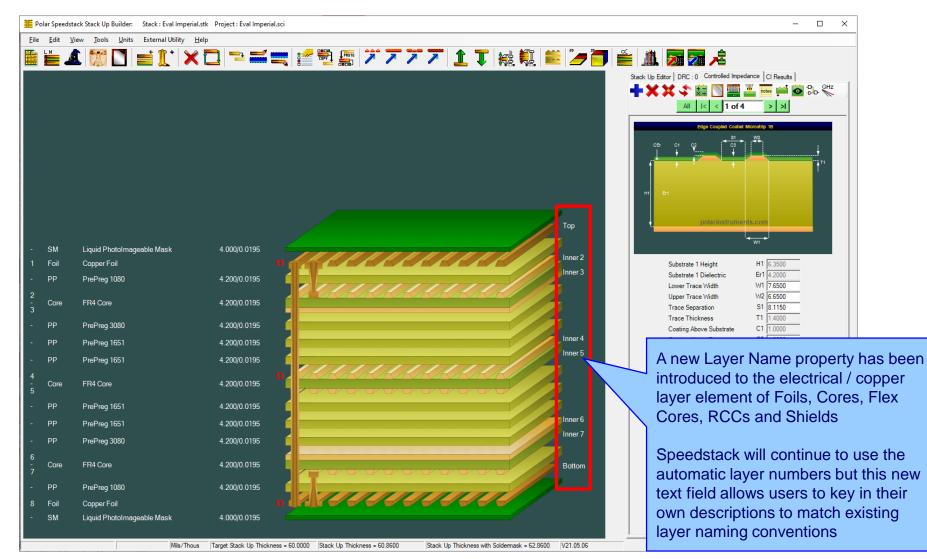
New Drill Cap feature

<u>New Drill Cap feature – technical report enhancements</u>

C.w.pps/Sampi	les\Eval Imperial Cap	ppod Drille coi	Units: Mils								
	өзлауан шрөнан сар	ppeu Drins.sci	Units. Mils								
Layer	Sta	ack up	Copper Layer Name	Supplier	Description	Турө	Processed Thickness		Loss Tangent	Impedance ID	
				Polar Samples	Liquid PhotoImageable M	ask SolderMask	1.000	4.000	0.0195		
1 🔺			Тор	Polar Samples	Copper Foil	Copper	1.400			1, 2	
	A			Polar Samples	PrePreg 1080	Dielectric	1.950	4.200	0.0195		
2			Inner 2	Polar Samples	Copper Foil	Copper	1.400				
				Polar Samples	PrePreg 1080	Dielectric	1.950	4.200	0.0195		
3			Inner 3	Polar Samples	Copper Foil	Copper	1.400				
				Polar Samples	PrePreg 1080	Dielectric	1.425	4.200	0.0195		
4			Inner 4		554.0	50.4	2.100		0.0105		
5			Inner 5	Polar Samples	FR4 Core	FR4	3.000 1.400	4.200	0.0195		
-				Polar Samples	PrePrea 1080	Dielectric	2.178	4.200	0.0195		
				Polar Samples		Dielectric	2.178		0.0195		
6			Inner 6				2.100			3, 4	
6	24.16			Polar Samples	FR4 Core	FR4	12.000	4.200	0.0195		
7 6			Inner 7		D D 1000	D: 1 - 1	2.100	4 000		5, 6	
				Polar Samples	-	Dielectric	2.178		0.0195		
			lan or 0	Polar Samples	PrePreg 1080	Dielectric	2.178	4.200	0.0195		
8			Inner 8	Polar Samples	FR4 Core	FR4	1.400 3.000	4.200	0.0195		
9			Inner 9				2.100				
				Polar Samples	PrePreg 1080	Dielectric	1.425	4.200	0.0195		
10			Inner 10	Polar Samples	Copper Foil	Copper	1.400				
				Polar Samples	PrePreg 1080	Dielectric	1.950	4.200	0.0195		
11		🛑 🔧 💔	Inner 11	Polar Samples	Copper Foil	Copper	1.400				
	Ý 🗖			Polar Samples	PrePreg 1080	Dielectric	1.950	4.200	0.0195		
12 🔻			Bottom	Polar Samples	Copper Foil	Copper	1.400			7, 8	
					geable M	ask SolderMask	1.000	4.000	0.0195		

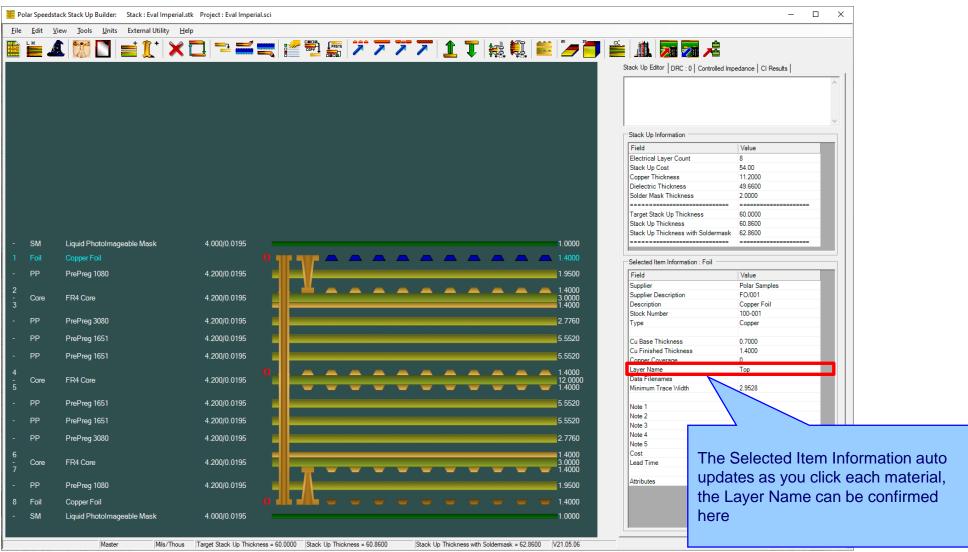
47

Import / Export enhancements

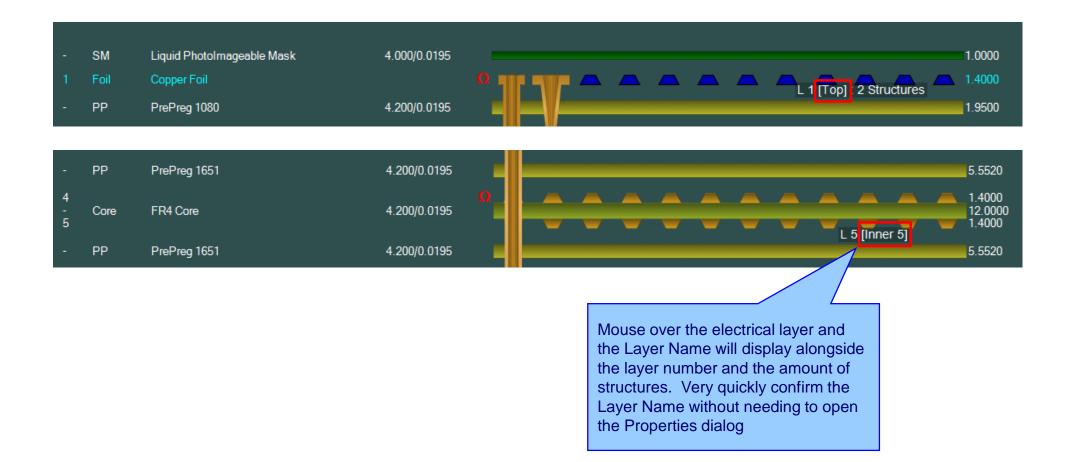

The following Import / Export options have been updated to support the drill cap properties introduced with Speedstack v21.07.08:

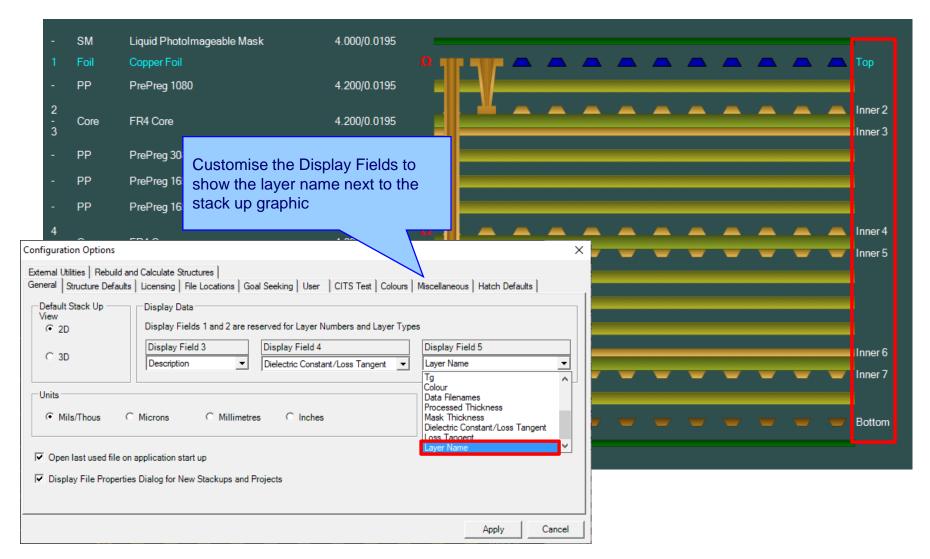
- XML STKX v22.00 and SSX v12.00 import / export options
- CSV export option

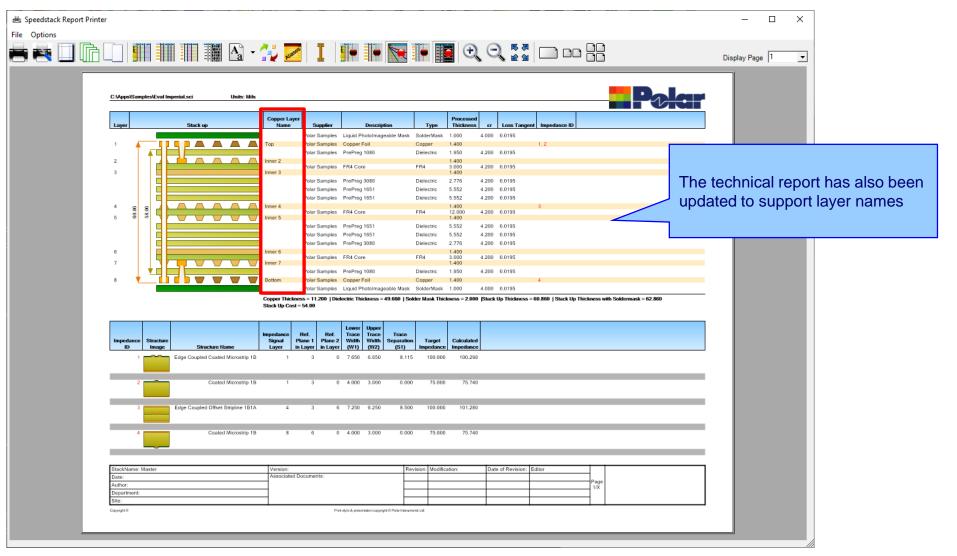
Speedstack v21.05.06 (May 2021)


Foil Pr	operties					
Mair	Notes Attributes					Apply
	Supplier	Polar Samples				
	Supplier Description	FO/001				Foil Properties
	Description	Copper Foil		Cost	1.00	The new Layer Name property exists
	Stock Number	100-001				on all materials with an electrical /
	Туре	Copper		Lead Time	0.00	copper layer. The user can key in any
	Copper					alphanumeric name
	Base Thickness	0.7000	Copper Coverage %		0.00	
	Finished Thickness	1.4000	Graphical Colour			
	Layer Name	Тор				
	Data Filename					
	Trace Inverted		Remove Copper (disabled if structur	as or sub-stack	e eviet)	
	Finishing Applied		(นารสมเดน 11 รายนิติเม	Co UI SUD-SIGUI	IS CAISU	

ore Properties					
Main Notes Attributes					
General Information				Apply	
Supplier	Polar Samples		Exchange Copper	Close	
Supplier Description	CO/005				
Description	FR4 Core		Cost 5.00		
Stock Number	400-005		Tolerance 0.00		Core Properties
Туре	FR4		Lead Time 0.00		
Upper Copper					For core materials, a new Layer Name
Base Thickness	1.4000	Copper Coverage %	. 0.00		property has been added for both
Finished Thickness	1.4000	Graphical Colour			upper and lower electrical / copper
Layer Name	Inner 2				layers
Data Filename				[
Trace Inverted		Remove Copper	an or out ottacks aviat)		
Finishing Applied	Γ	(disabled if structur	es or sub-stacks exist)		
Dielectric					
Base Thickness	3.0000	Td	0.0		
Finished Thickness	3.0000	CAF Resistance	0.0		
Dielectric Constant	4.2000	Z Axis Expansion	0.0		
Loss Tangent	0.0195	Excess Resin	0.0000		
Resin Content %	60.00	Isolation Distance	3.0000		
Tg	180.0	Graphical Colour			
Lower Copper					
Base Thickness	1.4000	Copper Coverage %	6 0.00		
Finished Thickness	1.4000	Graphical Colour			
Layer Name	Inner 3				
Data Filename					
Trace Inverted		Remove Copper	es or sub-stacks exist)		
Finishing Applied		(นารสมเดน 11 ระเวมิติเนิม	es or sub-stacks cylist)		


Copyright © Polar Instruments 2022


Copyright © Polar Instruments 2022



New Layer Name property for electrical / copper layers

New Layer Name property for electrical / copper layers

Copper Finishing classes increased

	d Prepreg Corrections		×				
Percentage Copper To Be	Embedded in Prepreg						
Set by Layer type							
Signal Layer	% 7	5					
Mixed Layer	% 1	% 15					
Plane Layer	% 5						
C Proportional to Covera	ige						
Copper Finishing							
Enter values of thickness the one added to the base	according to preference. thickness of copper laye	The selected wars when plating	alue will be				
Class Name	Value	Selectio					
Class Name Class 1							
	Value	Selectio					
Class 1	Value 0.7000	Selectio					
Class 1 Class 2	Value 0.7000 0.7000	Selectio					
Class 1 Class 2 Class 3 Class 4	Value 0.7000 0.7000 0.7000	Selection					
Class 1 Class 2 Class 3 Class 4 Excess Resin Test	Value 0.7000 0.7000 0.7000 0.7000	Selection					
Class 1 Class 2 Class 3 Class 4	Value 0.7000 0.7000 0.7000	Selection					

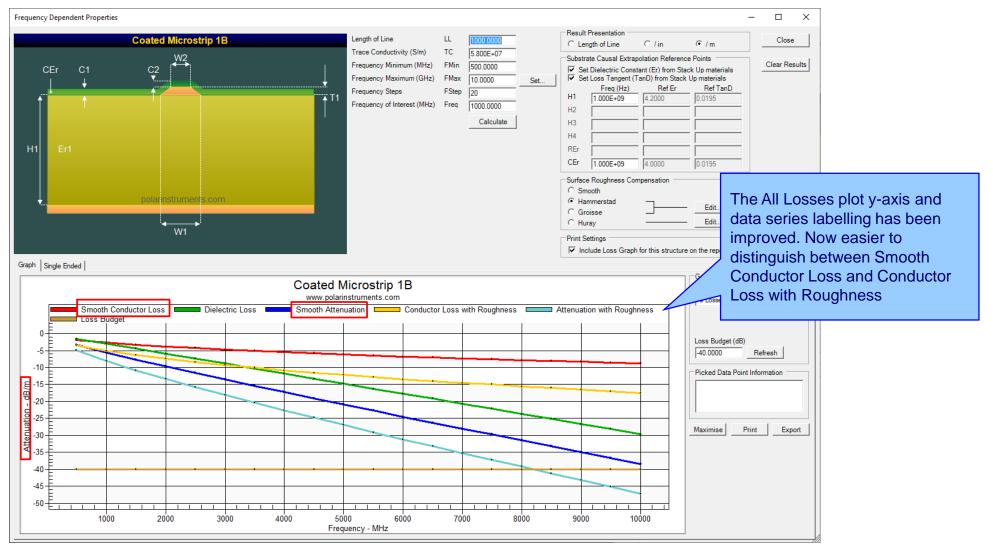
Speedstack v21.04 and earlier supported 4 classes

Co	pper Coverage Based Pre	epreg Corrections		×	
Perc	centage Copper To Be Emb	bedded in Prepreg			
• 9	Set by Layer type				
	Signal Layer	% 75	Lleor	coloctable	
	Mixed Layer	% 15		selectable	der Finishing
	Plane Layer	% 5	Optio	ns (Coppe	er Coverage &
C F	Proportional to Coverage			e % meth	
	per Finishing		L		
Ente the c	er values of thickness acco one added to the base thick	ording to preference. The s kness of copper layers wh	elected value will b en plating.	e	
ID	Class Name	Class Value	Active 🔺	Edit	
1	Class 1	0.7000	YES	Set	
2	Rich	0.8000			
3	Class 3	0.7000			
4	Class 4	0.7000			
5	Class 5	0.0000	-		
			•		
	ess Resin Test	% 15			

Speedstack v21.05 now supports 20 classes

Import / Export enhancements

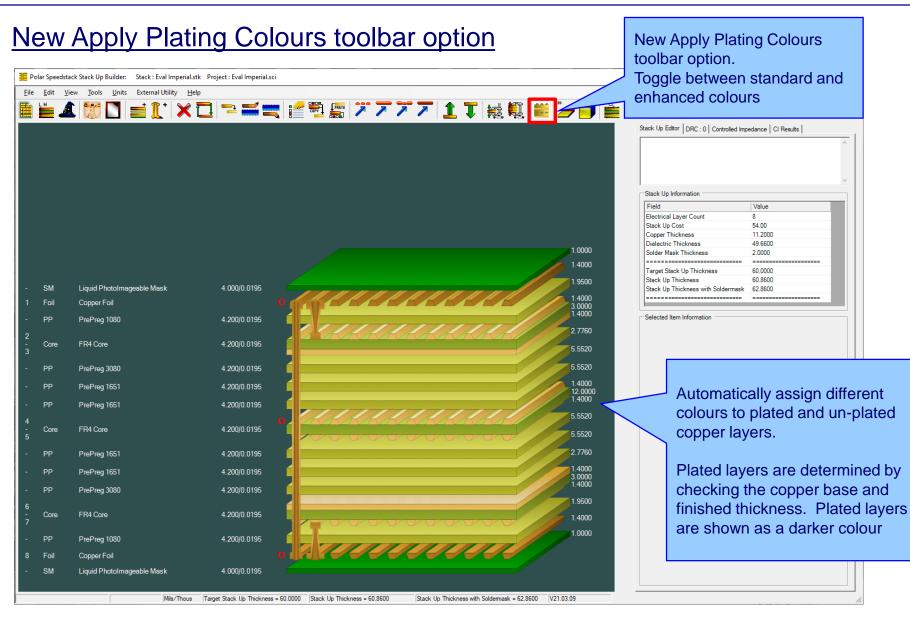
The following Import / Export options have been updated to support the layer name property introduced with Speedstack v21.05.06:


- XML STKX v21.00 and SSX v11.00 import / export options
- CSV export option
- Gerber / DXF export option

Speedstack v21.04.00 (April 2021)

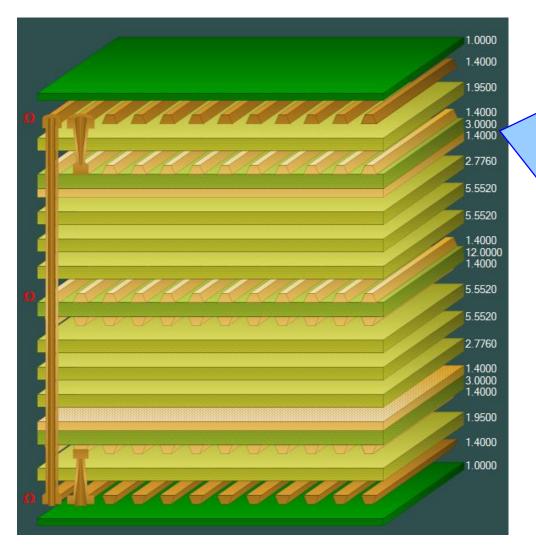
All Losses plot - clearer labelling

60


Other enhancements

- The controlled impedance and insertion loss Calculation Engine updated to the latest edition
- Frequency Dependent Calculations graphing library enhancements

Speedstack v21.03.09 (March 2021)



polarinstruments.com

Copyright © Polar Instruments 2022

New Apply Plating Colours toolbar option

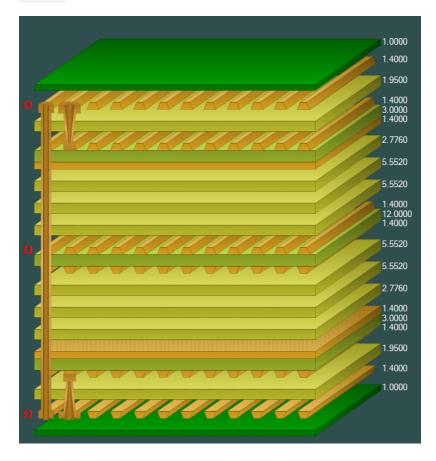
Plated Copper Layers

During PCB fabrication drill holes commonly have copper applied to the barrel wall by an electroplating process. This provides an interconnect between copper layers in the stack up.

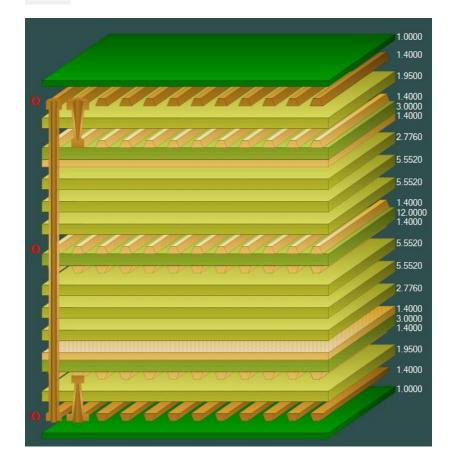
This electroplating process often results in additional copper also being applied to the exposed copper layers where the mechanical drill starts / ends.

It is important to account for this additional plated copper thickness when calculating the overall stack up thickness and controlled impedance / insertion loss structures.

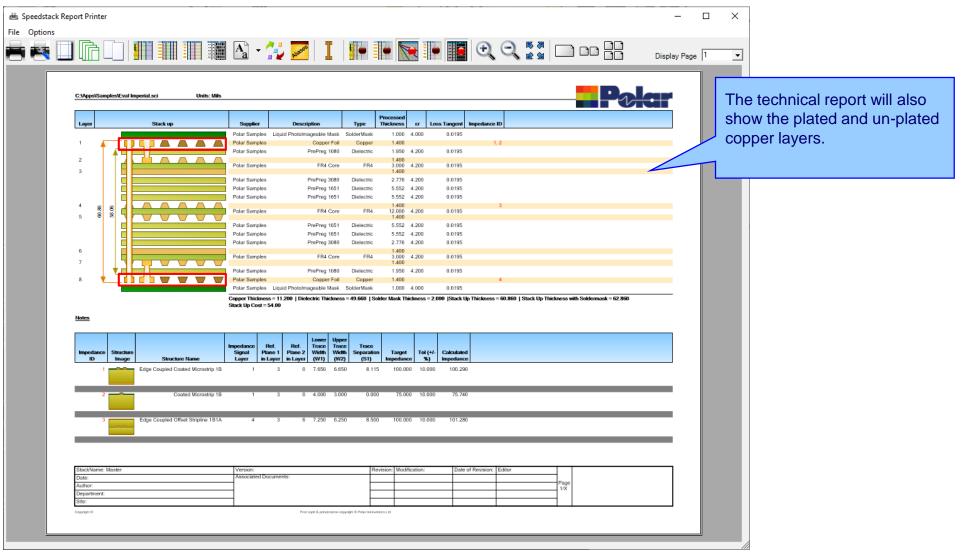
Speedstack has always allowed this additional plating thickness to be applied to the relevant copper layers. With v21.03 this has been enhanced further with automatic colour assignments to the plated and unplated layers


64

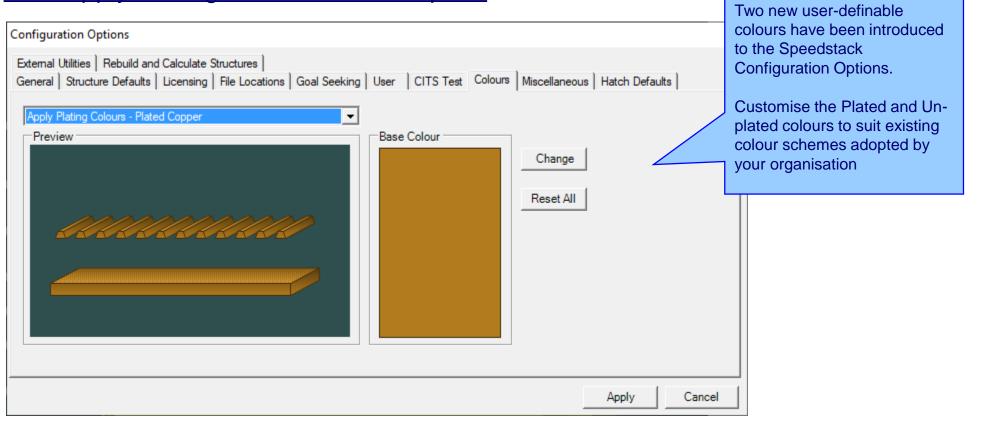
New Apply Plating Colours toolbar option



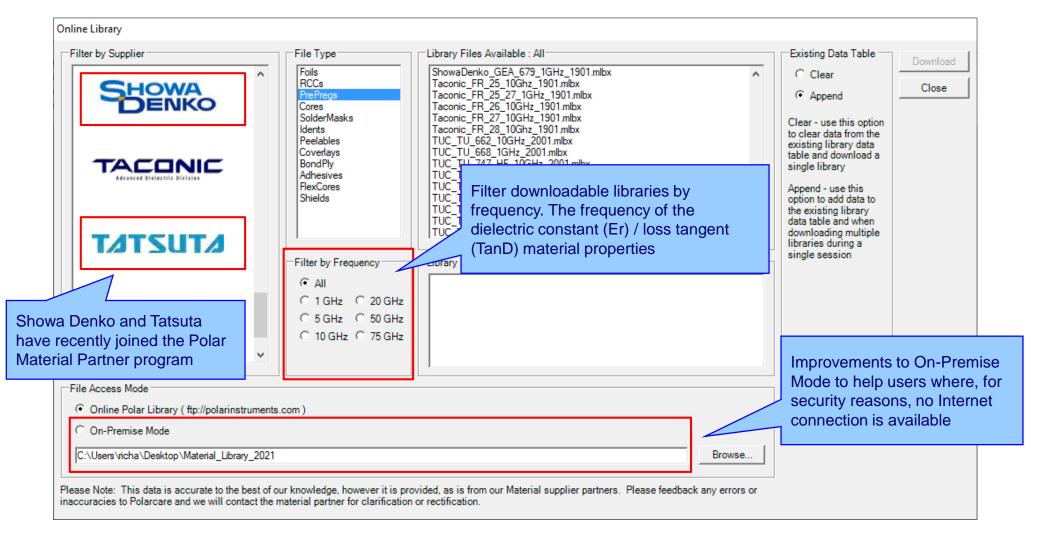
Standard Colours


Apply Plating Colours

65

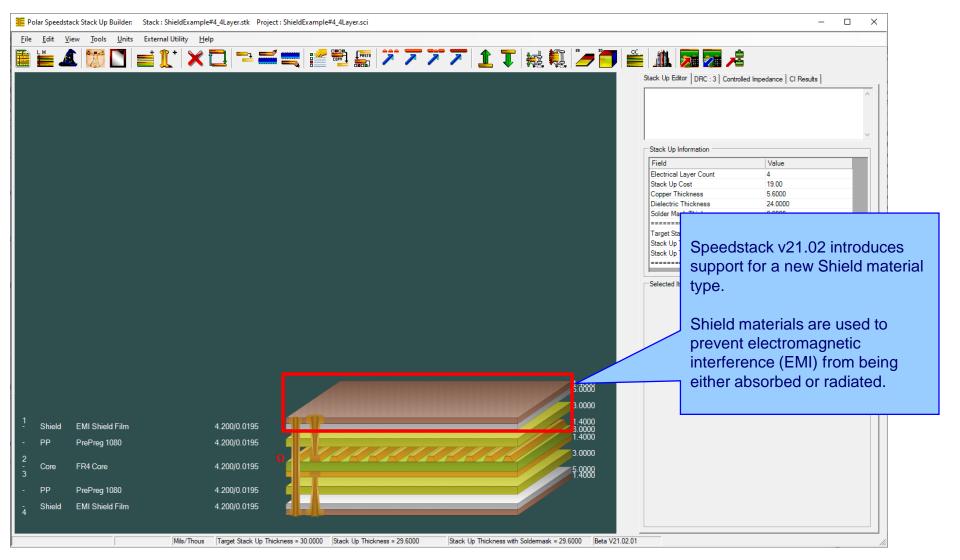


New Apply Plating Colours toolbar option

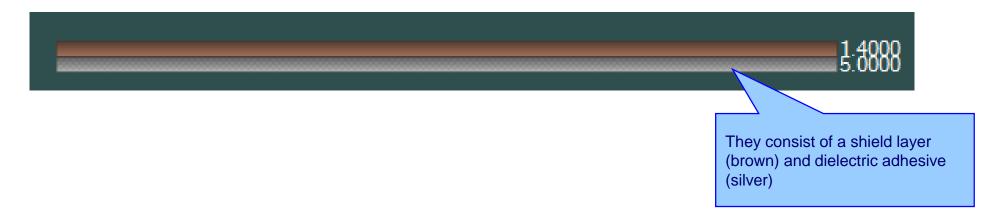


New Apply Plating Colours toolbar option

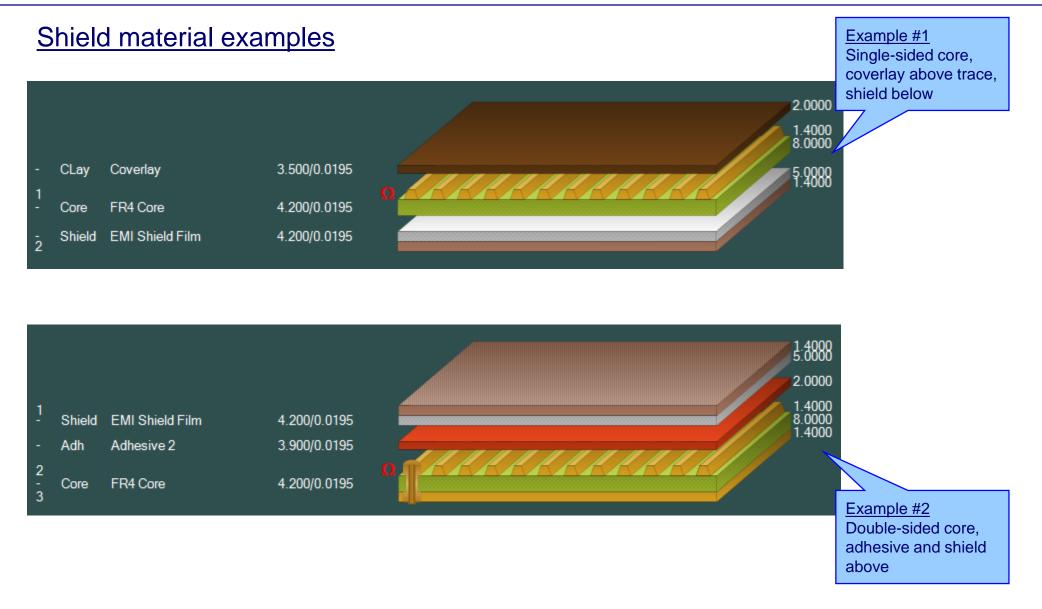
Online Library enhancements


68

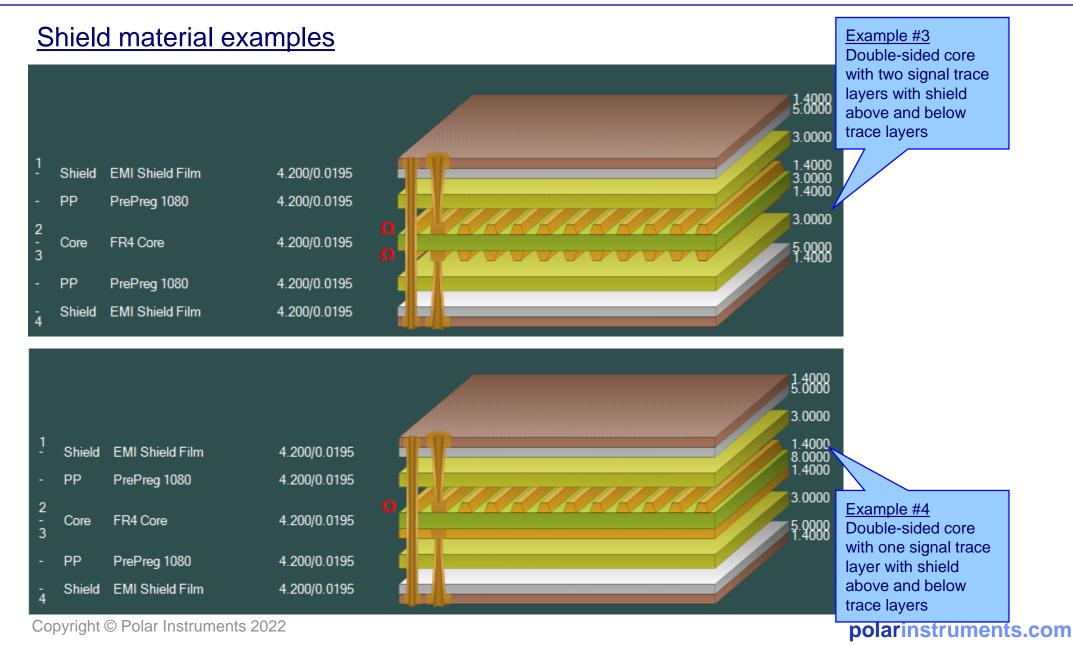
Speedstack v21.02.01 (February 2021)



New Shield material



New Shield material Shields are typically applied to the outer layer(s) of the stack up 1.4888 -EMI Shield Film Shield 4.200/0.0195 PP PrePreg 1080 4.200/0.0195 3.0000 1.4000 8.0000 1.4000 2 FR4 Core 4.200/0.0195 Core 3 PP PrePreg 1080 4.200/0.0195 3.0000 4.200/0.0195 5.0000 1.4000 EMI Shield Film Shield



Speedstack 2021 - 2022 Introduction

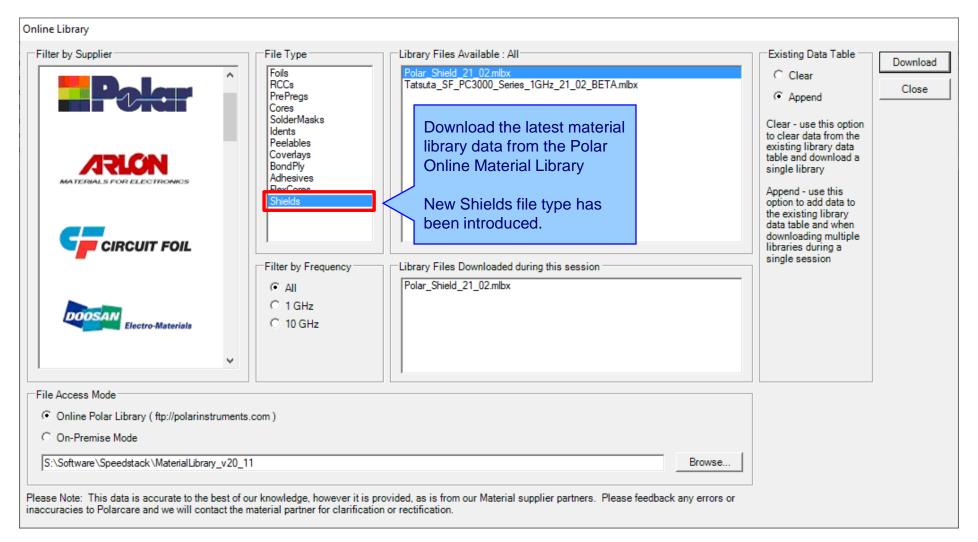
Speedstack 2021 - 2022 Introduction

Material library enhancements

		ent Inks Peelable Masks Coverlays Bond Ply Adh					
Supplier	Supplier Description	Description	Stock Number	Dielectric Base	Thickness Dielectric Finis	shed Thickne Shield Cu Thickne	255 [
PolarSamples	SH/001	EMI Shield Film	1200-001	5	5	0.7	4
Polar Samples	SH/002	EMI Shield Film	1200-002	5	5	1.4	4
Polar Samples	SH/003	EMI Shield Film	1200-003	5	5	2.8	4
Polar Samples	SH/004	EMI Shield Film	1200-004	10	10	0.7	4
Polar Samples	SH/005	EMI Shield Film	1200-005	10	10	1.4	4
Polar Samples	SH/006	EMI Shield Film	1200-005	10	10	2.8	4

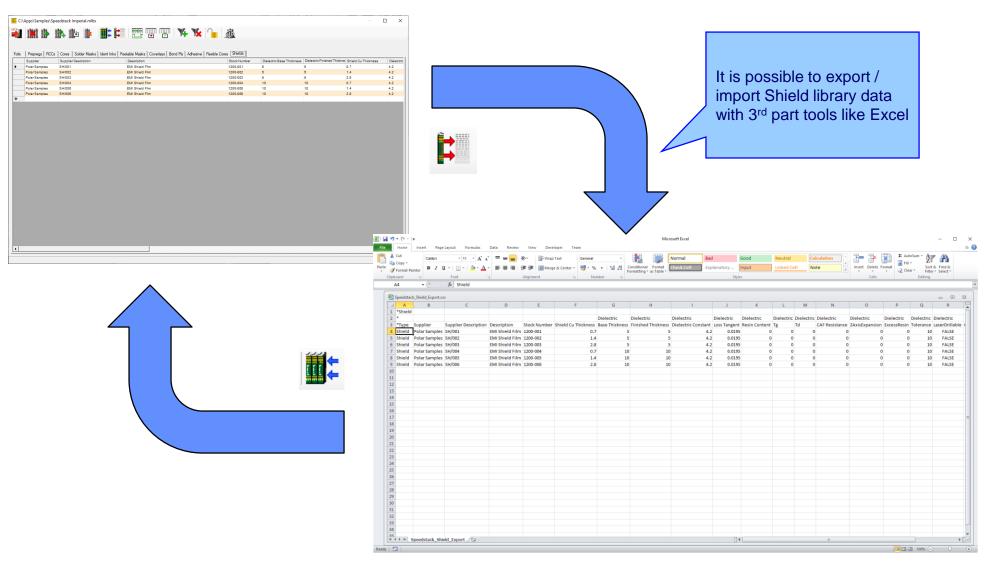
polarinstruments.com

74

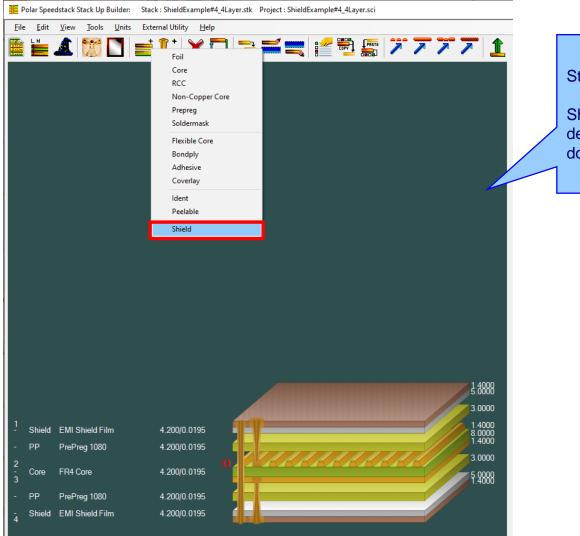

Review/Edit Shield				Material library Edit dialog	Shiel
Supplier	Polar Samples	Size	*		
Supplier Description	SH/001	Note 1	,		
Description	EMI Shield Film				
StockNumber	1200-001				
Туре	Shield				
		Note 2			
Base Thickness	5.0000				
Finished Thickness	5.0000				
Dielectric Constant	4.2	Note 3			
Loss Tangent	0.0195				
Resin Content	0				
Tg	0				
Td	0	Note 4			
CAF Resistance	0				
Z Axis Expansion	0				
Excess Resin	0.0000	Note 5			
Tolerance +/-%	10				
Shield Copper Thickness	0.7000				
Cost	0				
Lead Time	0				
Laser Drillable					

Copyright © Polar Instruments 2022

75



Online Library enhanced to support Shield materials

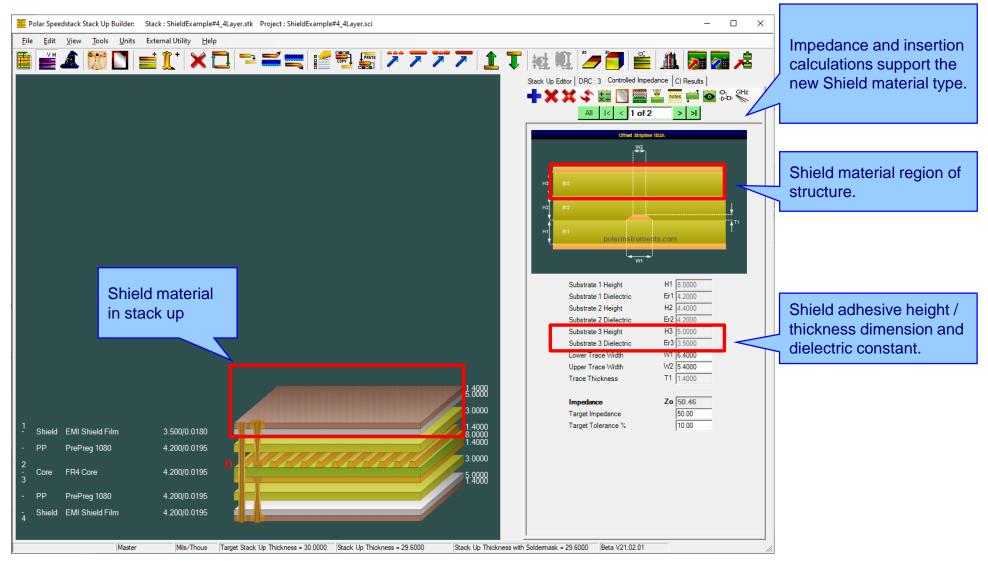


Export / Import Shield library to Excel

Stack up editor enhancements

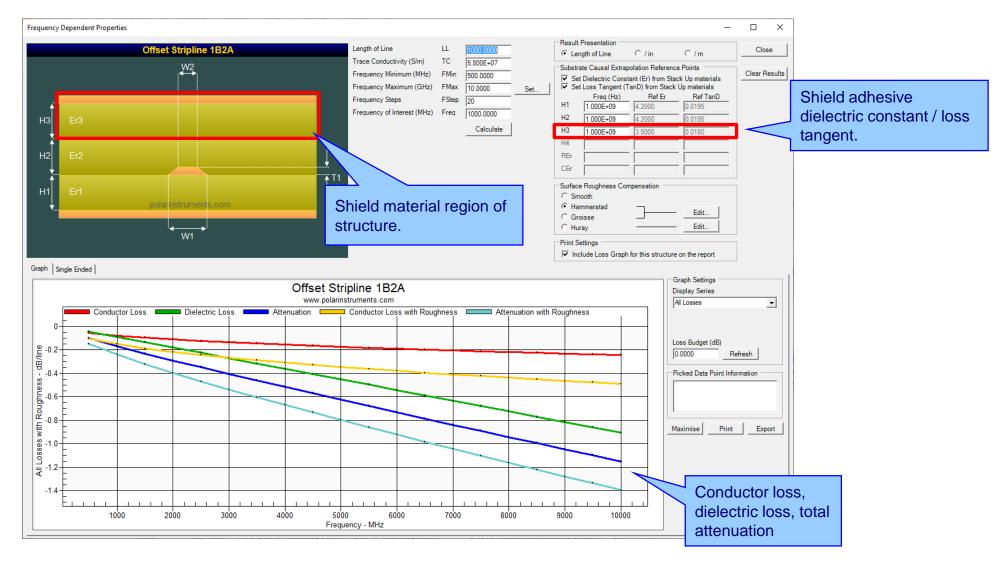
Stack Up editor enhancements:

Shield material options to add, delete, swap, move up, move down, symmetry and set properties

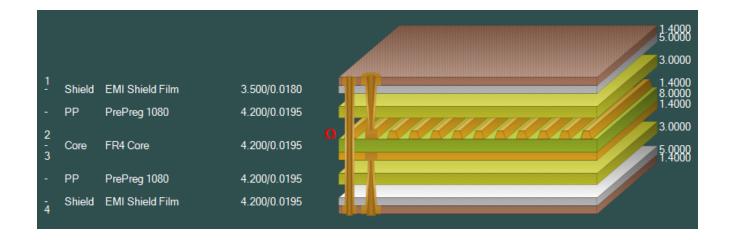

Shield properties

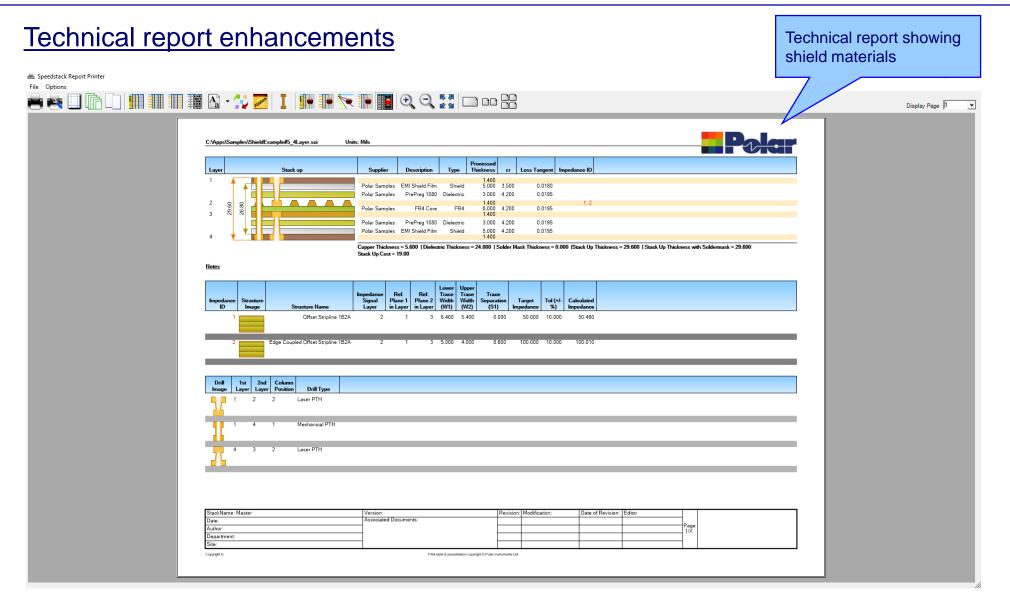
Small LX00 Market Film LX00 Market LX00 Market Film LX00 Market Fil	<u>F</u> ile <u>E</u> di	it <u>V</u> iew <u>T</u> ools <u>U</u> nits	s External Utility <u>H</u> elp		: ShieldExample#4_4Layer.sci			_		View and customise the Shield properties. Useful
2-bidd Properior Hen Liste: Articles] Sealer Pre-Strades Sealer Pre-Strades <tr< td=""><td></td><td>🔟 🔭 🔔</td><td>📑 🚺 🗡 🚺</td><td>] 🔁 🛒</td><td></td><td><u>テ テ テ テ 1</u> '</td><td>T izi 🗓 🍠 🗖 i</td><td>🎬 🥼 🏊</td><td>2 , , , , , , , , , , , , , , , , , , ,</td><td></td></tr<>		🔟 🔭 🔔	📑 🚺 🗡 🚺] 🔁 🛒		<u>テ テ テ テ 1</u> '	T izi 🗓 🍠 🗖 i	🎬 🥼 🏊	2 , , , , , , , , , , , , , , , , , , ,	
2 Swed CMI Shed Fan 4 2000 0195								, <u> </u>		1
 Swade EMI Shadel Film Swa					Main Notes Attributes					
Supple Description SH-002 Description EM Shed Film Supple Mission Film 14000 Supple Mission Film 10000 Less Tayerst 1000 Less Tayerst 1000 Less Tayerst 1000 Less Tayerst 1000 Less Tayerst 10000 Less Tayerst 10000 Less Tayerst 10000 <td></td> <td></td> <td></td> <td></td> <td>General Information</td> <td></td> <td></td> <td></td> <td>Apply</td> <td></td>					General Information				Apply	
 Shadi EMIShadiFim 4.2000.0195 PP PrePreg 1080 Shadi EMIShadiFim 4.2000.0195 Shadi EMIShadiFim 4.2000.0195 Shadi EMIShadiFim 4.2000.0195 					Supplier	Polar Samples			Cancel	
Stack Humber 120002 Type Swad Stack Humber 120002 Type Swad Stack Standard Construction 1400 Graphical Colour Graphical Colour Distribution 1400 Graphical Colour Graphical Colour Distribution 1400 Graphical Colour Graphical Colour Distribution 1400 Graphical Colour Graphical Colour Trace Nerved Plancine Cogen Finished Thinkness 5000 Distributions 5000 Distributions 1000 Distributions 1000 Type 1000 Graphical Colour 10000 Type 10000 Graphical Colour 10000 Type 10000 Graphical Colour 10000 Type 10000					Supplier Description				Close	
Image: Shed EMI Shed Film 4 2000.0195 PP Prefreg 1080 4 2000.0195					Description	EMI Shield Film				
 Sheld Coper Sheld Coper Sheld Coper Sheld Film A 2000 0195 PP PP PeProg 1880 A 2000 0195 Sheld Film Sheld Film<td></td><td></td><td></td><td></td><td>Stock Number</td><td>,</td><td></td><td></td><td></td><td></td>					Stock Number	,				
1 Steed EMI Sheid Film 42000.0196 2 Ore FAI Core 42000.0196 3 Sheid EMI Sheid Film 42000.0196 2 Sheid Sheid Finane 3 Sheid EMI Sheid Film 42000.0196 4 Sheid Sheid Sheid Sheid 2 Sheid EMI Sheid Film 42000.0196					Туре	Shield				
 Inside EMI Sheid Film 4 2000 0195 PP PrePreg 1080 4 2000 0195 Sheid EMI Sheid Film 5 2000 					Shield Copper					
I Shedd EMI Sheid Film 4 2000 0195 2 Core FR4 Core 4 2000 0195 2 Core FR4 Core 4 2000 0195 3 Sheid EMI Sheid Film 4 2000 0195 4 Sheid EMI Sheid Film 4 2000 0195					Base Thickness	1.4000	Copper Coverage %	0.00		
Image: Trace Invented Finishing Applied Finishing Applied Finishing Applied Sheid Dielectric Base Thickness Finishing Applied CAF Resistance Dielectric Constant 4 2000 Lies Tangent 0 00 Lies Tangent 0 00 PP PrePreg 1080 4 200/0 0195 Core FR4 Core 4 200/0 0195 PP PrePreg 1080 4 200/0 0195 Sheid EMI Sheid Film 4 200/0 0195					Finished Thickness	1.4000	Graphical Colour			
 Institud Prince (disabled if structures or sub-stacks axis) Finishing Apriled Shield Dielectric Base Thickness Dielectric Constant Cos Tangert Dielectric Constant Shield EMI Shield Film 4 2000 0195 PP PrePreg 1080 4 2000 0195 Fir4 Core A 2000 0195 Grove FR4 Core A 2000 0195 Fir4 Core A 2000 0195 Grove FR4 Core A 2000 0195 Fir4 Core A 2000 0195 Grove FR4 Core A 2000 0195 Fir4 Core A 2000 0195 Grove FR4 Core Grove FR4 Core A 2000 0195 Grove FR4 Core Grove FR4 Core<td></td><td></td><td></td><td></td><td>Data Filename</td><td></td><td></td><td></td><td></td><td></td>					Data Filename					
Image: Provide and the second and t					Trace Inverted		Remove Copper			
Base Thickness 50000 Finished Thickness 50000 Core FR4 Core 4 2000 0195 PP PrePreg 1080 4 Shield Film 4 Shield Film					Finishing Applied		(disabled if structures or sub	-stacks exist)		
I Shedd EMI Shield Film 4.200/0.0195 - PP PrePreg 1080 4.200/0.0195 2 Core FR4 Core 4.200/0.0195 3 Shield EMI Shield Film 4.200/0.0195 4 Shield EMI Shield Film 4.200/0.0195					Shield Dielectric					
1 Shield Film 4.200/0.0195 2 Core FR4 Core 4.200/0.0195 2 Core FR4 Core 4.200/0.0195 3 Shield Film 4.200/0.0195 4 Shield Film 4.200/0.0195					Base Thickness	5.0000	Td	0.0		
1 Shield Film 4.200/0.0195 2 Core FR4 Core 4.200/0.0195 3 0 1 to 0 4 Shield Film 4.200/0.0195					Finished Thickness	5.0000	CAF Resistance	0.0		
Period Fesin Content % D00 Isolation Distance 50000 1 Shield EMI Shield Film 4.200/0.0195 1.4000 1.4000 Dielectric Base Thickness 5.0000 2 Core FR4 Core 4.200/0.0195 3.0000 1.4000 Dielectric Finished Thickness 5.0000 3 Core FR4 Core 4.200/0.0195 3.0000 1.4000 To					Dielectric Constant	4.2000	Z Axis Expansion	0.0		
Tg Dia Graphical Colour 1 Shield EMI Shield Film 4.200/0.0195 - PP PrePreg 1080 4.200/0.0195 2 Core FR4 Core 4.200/0.0195 3 Core FR4 Core 4.200/0.0195 4 Shield EMI Shield Film 4.200/0.0195					Loss Tangent	0.0195	Excess Resin	0.0000		
1 Shield EMI Shield Film 4.200/0.0195 - PP PrePreg 1080 4.200/0.0195 2 Core FR4 Core 4.200/0.0195 3 Core FR4 Core 4.200/0.0195 4 Shield EMI Shield Film 4.200/0.0195 1.4000 4 Shield EMI Shield Film 4.200/0.0195 1.4000					Resin Content %	0.00	Isolation Distance	5.0000		
1 Shield Film 4.200/0.0195 - PP PrePreg 1080 4.200/0.0195 2 Core FR4 Core 4.200/0.0195 - PP PrePreg 1080 4.200/0.0195 - Shield EMI Shield Film 4.200/0.0195 - Shield EMI Shield Film 4.200/0.0195					Tg	0.0	Graphical Colour			
- PP PrePreg 1080 4.200/0.0195 2 Core FR4 Core 4.200/0.0195 3 - PP PrePreg 1080 4.200/0.0195 - PP PrePreg 1080 4.200/0.0195 - Shield EMI Shield Film 4.200/0.0195							Data Filenames			1
- PP PrePreg 1080 4.200/0.0195 2 Core FR4 Core 4.200/0.0195 3 - PP PrePreg 1080 4.200/0.0195 - PP PrePreg 1080 4.200/0.0195 - Shield EMI Shield Film 4.200/0.0195	1 Shiel	d EMI Shield Film	4 200/0 0105	allealle		1.4000	Di Lui Du Till	5.0000		
- PP PrePreg 1080 4.200/0.0195 2 Core FR4 Core 4.200/0.0195 3 0.000 - PP PrePreg 1080 4.200/0.0195 - PP PrePreg 1080 4.200/0.0195 - Shield EMI Shield Film 4.200/0.0195										
- Core FR4 Core 4.200/0.0195 - PP PrePreg 1080 4.200/0.0195 - Shield EMI Shield Film 4.200/0.0195	- PP	PrePreg 1080	4.200/0.0195			3.0000	Dielectric Constant	4.2		
3 1.4000 - PP PrePreg 1080 4.200/0.0195 3 3.0000 4 Shield EMI Shield Film 4.200/0.0195	2 - Core	FR4 Core	4 200/0 0195			1.4000				
- PP PrePregroso 4.200/0.0195 5.0000 - A - A - A - A <t< td=""><td>3</td><td></td><td>1.200/0.0100</td><td></td><td></td><td>1.4000</td><td>Tg</td><td>0</td><td></td><td></td></t<>	3		1.200/0.0100			1.4000	Tg	0		
- Shield EMI Shield Film 4.200/0.0195	- PP	PrePreg 1080	4.200/0.0195			3.0000		-		
	- Shie	d EMI Shield Film	4.200/0.0195			5.0000		-		
	4					1.4000	Excess Resin	0.0000	_	
		1	Mils/Thous	Tamet Stack Lie Third	mass = 30.0000 Stock Up Thickness = 20	6000 Stock Up Thickness	s with Soldermask = 29.6000 Beta V21.02	01		

80

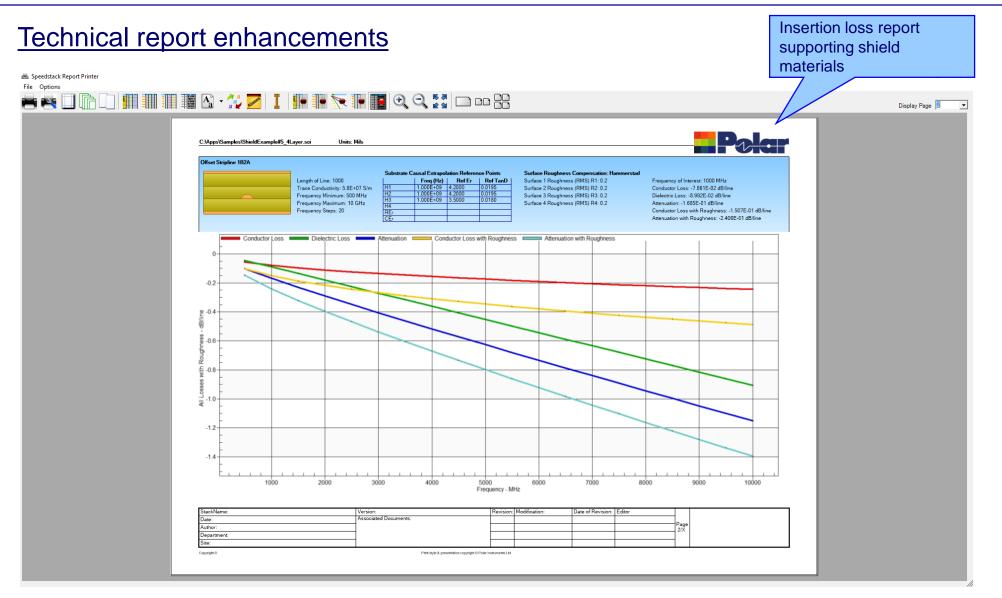

Controlled impedance and insertion loss calculations

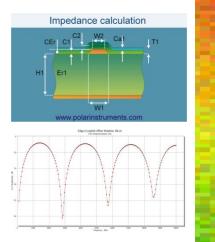
Copyright © Polar Instruments 2022

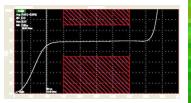

Controlled impedance and insertion loss calculations

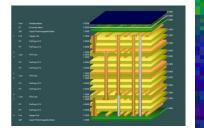


Controlled impedance and insertion loss calculations


Please note: Speedstack is capable of supporting many shield types for stack up design and documentation. However, it is important to use the correct type of shield material for controlled impedance and insertion loss applications. They are often designated by the shield vendor as 'for high speed signal transmission applications'.

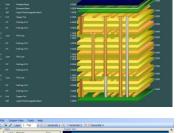


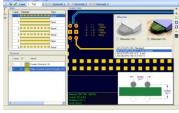

Import / Export enhancements


The following Import / Export options have been updated to support the new shield material introduced with Speedstack 2021:

- XML STKX v20.00 and SSX v10.00 import / export options
- CSV export option
- Gerber / DXF export option




Thank you for viewing this Speedstack 2021 - 2022 preview. If you have questions we would be delighted to help you. Your local contact information is contained on the following slide



Polar Logo & graphic devices are registered trade marks of Polar Instruments Ltd. Copyright Polar Instruments Ltd (c) 2022

For more information:	
Contact Polar now:	Phone
USA / Canada / Mexico	
Geoffrey Hazelett	(503) 356 5270
Asia / Pacific	
Terence Chew	+65 6873 7470
UK / Europe	
Neil Chamberlain	+44 23 9226 9113
Germany / Austria / Switzerland	
Hermann Reischer	+43 7666 20041-0

EI2 C3

www.polarinstruments.com

Polar Logo & graphic devices are registered trade marks of Polar Instruments Ltd. Copyright Polar Instruments Ltd (c) 2022