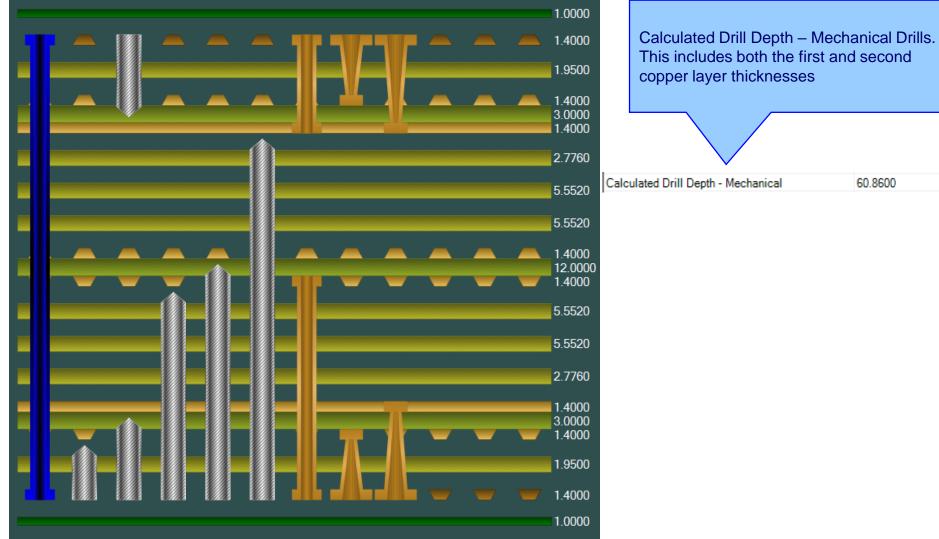


Coated Microstrip 1B Edge-Coupled Offset Striptione 1B1AIR Surface Coplanar Strips With Ground 2B Coated Coplanar Strips 2B Diff Coated Coplanar Waveguide 2B Dual Coated Microstrip 1B Edge-Coupled Offset Striptione 2B1AIR Coated Microstrip 1B Image: Coated Annual Striptione 2B1AIR Image: Coated

Speedstack 2021 - 2024 Updates

Richard Attrill – May 2024 (Rev 15)

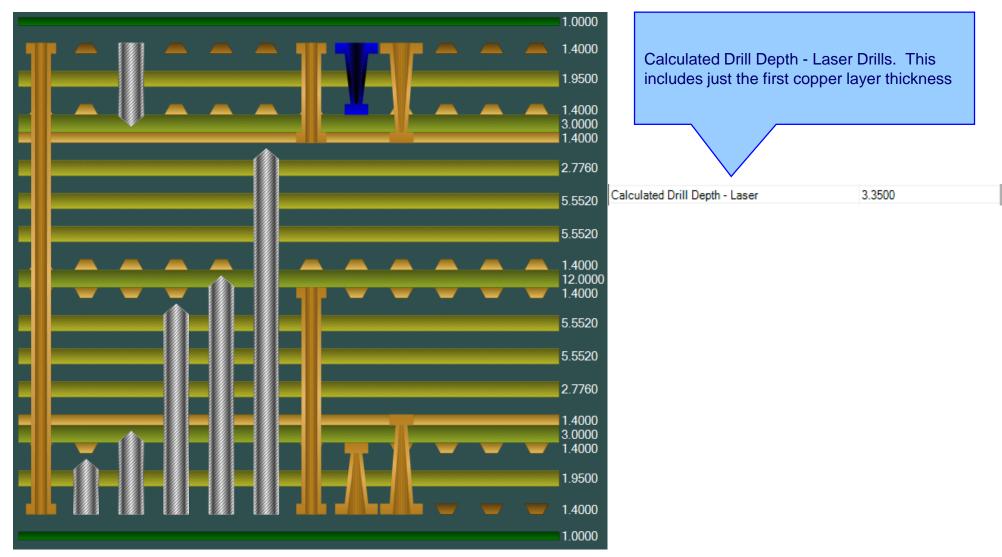
Speedstack v24.05.01 (May 2024)


New Calculated Dill Depth Example - 6 File Edit View Tools Units External Utility Help File Edit View Tools Units External Utility Help File Edit View Tools Of Point Control Contr	 methods are used depending upon the drill type: Calculated Drill Depth – Mechanical Drills. This includes both the first and second copper layer thicknesses Calculated Drill Depth - Laser Drills. This includes just the first copper layer thickness Calculated Drill Depth - Back Drills. Two Drill Depths are shown, from the first electrical layer to the must-cut layer and from the first electrical layer to the must-not-
- SM Liquid PhotoImageable Mask 1 Foil Copper Foil	4.000/0.0195
- PP PrePreg 1080	4.200/0.0195
2 - Core FR4 Core 3	4.2000 0195
- PP PrePreg 3080	4.200/0.0195
- PP PrePreg 1651	4.200/0.0195
- PP PrePreg 1651	4.200/0.0195 4.200/0.0195 5.5520 availe Hole Size 7.1000 ad Size 0
4 - Core FR4 Core 5	4.200/0 0195
- PP PrePreg 1651	4.200/0.0195 5.5520 Calculated Dnil Depth - Mechanical 60.8600
- PP PrePreg 1651	4.200/0 0195 5.5520 Note 3
- PP PrePreg 3080	4.200/0.0195 4.200/0.0195 2.7760 Note 4.000 1.000 5.000 1.000 5.000 1.000 5.000 1.000 5.000 1.000 5.000 1.000 5.000 1.000 5.000 1.000 5.000 1.000 5.000 1.0000 1.000 1.000 1.000 1.000 1.000 1.0
6 - Core FR4 Core 7	4.200/0.0195
- PP PrePreg 1080	4.2000 0195
8 Foil Copper Foil	
- SM Liquid PhotoImageable Mask	4.000/0.0195
Mis/Thous Target Stack Up 1	hickness = 60.0000 [Stack Up Thickness = 60.8600 [Stack Up Thickness with Soldermask = 62.8600 [V24.05.01]

polarinstruments.com

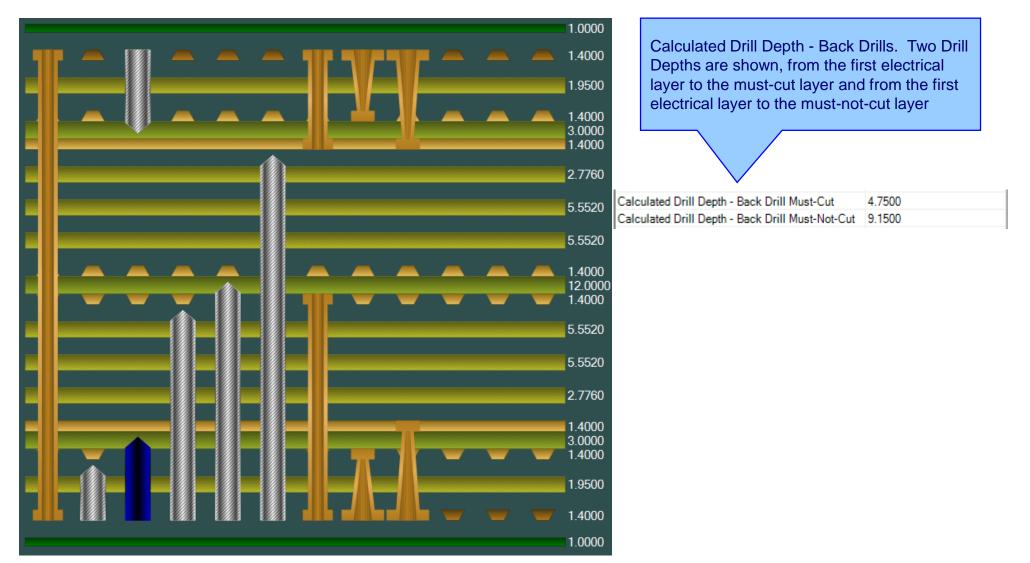
Copyright © Polar Instruments 2024

<u>New Calculated Drill Depth – Mechanical Drills</u>



This includes both the first and second 60.8600

Copyright © Polar Instruments 2024



<u>New Calculated Drill Depth – Laser Drills</u>

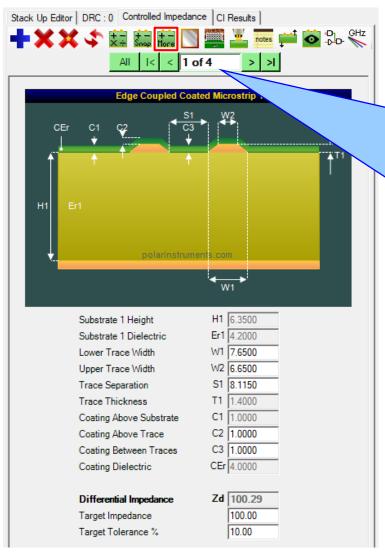
<u>New Calculated Drill Depth – Back Drills</u>

New Calculated Drill Depth enhancements

			xample - 8 laye	13.301												
Layer			St	tack up				Supplier	D	escription	Туре	Processed Thickness	EГ	Loss Tangent	Impedance ID	
								Polar Samples	Liquid Pho	tolmageable Mask	SolderMas	c 1.000	4.000	0.0195		
1								Polar Samples		Copper Foil	Coppe	r 1.400				
								Polar Samples		PrePreg 1080	Dielectri	: 1.950	4.200	0.0195		
2 3								Polar Samples		FR4 Core	FR	1.400 3.000 1.400	4.200	0.0195		
								Polar Samples		PrePreg 3080	Dielectri	2.776	4.200	0.0195		
								Polar Samples		PrePreg 1651	Dielectri	5.552	4.200	0.0195		
								Polar Samples		PrePreg 1651	Dielectri	5.552	4.200	0.0195		
4 5	62.86 60.86 58.06							Polar Samples		FR4 Core	FR	1.400 12.000 1.400	4.200	0.0195		
								Polar Samples		PrePreg 1651	Dielectri		4.200	0.0195		
								Polar Samples		PrePreg 1651	Die					
								Polar Samples		PrePreg 3080	Diel					
6								Polar Samples		FR4 Core						
7								r olar oampies		11110010		The C	alc	ulated	Drill D	epth result
								Polar Samples		PrePreg 1080						
8	V			IN VIN				Polar Samples		Copper Foil	С	nave I	bee	n adde	ed to tr	ne Technic
										tolmageable Mask	Solder	.	4			
										Dielectric Thicknes Stack Up Thickne	s = 49 0	кероі	tas		able s	electable
								tack Up Thickn tack Up Cost =		Готаск Ор Тпіскпе	iss	colum	ne			
										_ /		Joium	113			
								Calculated								
								Drill	Calculated Drill							
						Calculated	Calculated	Drill Depth -	Drill Depth -	-						
Drill	I Column		1st 2nd	Must-Cut	Must-Not-Cut	Drill Depth -	Calculated Drill Depth -	Drill	Drill		L					
Drill Image		Drill Type	1st 2nd Layer Layer	Must-Cut Layer No	Must-Not-Cut Layer No	Drill	Drill	Drill Depth - Back Drill	Drill Depth - Back	ıt.						
		Drill Type Laser PTH				Drill Depth -	Drill Depth -	Drill Depth - Back Drill	Drill Depth - Back Drill							
	e Position 8		Layer Layer			Drill Depth - Mechanical	Drill Depth - Laser	Drill Depth - Back Drill Must-Cut	Drill Depth - Back Drill Must-Not-Cu	D						
	e Position 8	Laser PTH	Layer Layer			Drill Depth - Mechanical 0.000	Drill Depth - Laser 3.350	Drill Depth - Back Drill Must-Cut 0.000	Drill Depth - Back Drill <u>Must-Not-Ct</u> 0.00	D						
	e Position 8	Laser PTH	Layer Layer			Drill Depth - Mechanical 0.000	Drill Depth - Laser 3.350	Drill Depth - Back Drill Must-Cut 0.000	Drill Depth - Back Drill <u>Must-Not-Ct</u> 0.00	D .						
	pe Position 8	Laser PTH	Layer Layer 1 2 1 3			Drill Depth - Mechanical 0.000 9.150	Drill Depth - Laser 3.350 0.000	Drill Depth - Back Drill Must-Cut 0.000	Drill Depth - Back Drill <u>Must-Not-Ct</u> 0.00	D .						
	pe Position 8	Laser PTH	Layer Layer 1 2 1 3			Drill Depth - Mechanical 0.000 9.150	Drill Depth - Laser 3.350 0.000	Drill Depth - Back Drill Must-Cut 0.000	Drill Depth - Back Drill <u>Must-Not-Ct</u> 0.00	D .						
	pe Position 8	Laser PTH	Layer Layer 1 2 1 3	Layer No		Drill Depth - Mechanical 0.000 9.150	Drill Depth - Laser 3.350 0.000	Drill Depth - Back Drill Must-Cut 0.000 0.000	Drill Depth - Back Drill Must-Not-Ca 0.00 0.00	D .	Date of Re	ision: Editor				
Imag Imag I I I I I I I I I I I I I I I I I I I	e Position 8	Laser PTH	Layer Layer 1 2 1 3	Layer No Ver	Layer No	Drill Depth - Mechanical 0.000 9.150 0.000	Drill Depth - Laser 3.350 0.000	Drill Depth - Back Drill Must-Cut 0.000 0.000	Drill Depth - Back Drill Must-Not-Ca 0.00 0.00	D D D	Date of Ret	iision: Editor				
Imag Inag Inag Inag Inag Inag Inag Inag In	e Position 8	Laser PTH	Layer Layer 1 2 1 3	Layer No Ver	Layer No - - - rsion:	Drill Depth - Mechanical 0.000 9.150 0.000	Drill Depth - Laser 3.350 0.000	Drill Depth - Back Drill Must-Cut 0.000 0.000	Drill Depth - Back Drill Must-Not-Ca 0.00 0.00	D D D	Date of Rev	iision: Editor		Page 1/X		
	e Position 8	Laser PTH	Layer Layer 1 2 1 3	Layer No Ver	Layer No - - - rsion:	Drill Depth - Mechanical 0.000 9.150 0.000	Drill Depth - Laser 3.350 0.000	Drill Depth - Back Drill Must-Cut 0.000 0.000	Drill Depth - Back Drill Must-Not-Ca 0.00 0.00	D D D	Date of Ret	iision: Editor		Page 1/X		

New Calculated Drill Depth enhancements

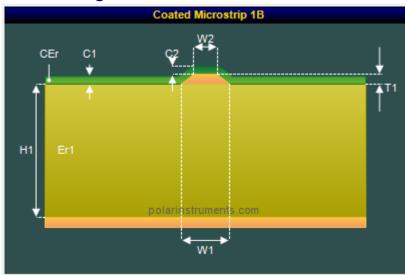
3 Beck Drill 1 - 2 5 0.000 0.000 4.750 9.150 1 Mechanical PTH 1 8 - 4 5 50.000 0.000 37.630 53.110 The Calculated Drill Depth reprive been added to the Tecch Report as Drill Table selectal columns 1 Mechanical PTH 8 - 5 0.000 0.000 24.430 37.830 53.110 1 Mechanical PTH 8 - 5 0.000 0.000 24.430 37.830 53.110 The Calculated Drill Depth reprive been added to the Tecch Report as Drill Table selectal columns 1 7 Mechanical PTH 8 5 - 24.430 0.000		olumn	Drill Type	1st Layer	2nd Layer		Must-Not-Cul Layer No	Calculated Drill Depth - Mechanical	Calculated Drill Depth - Laser	Calculated Drill Depth - Back Drill Must-Cut	Calcu Di Dep Ba Di Must-N	rill oth - ick rill
6 Back Drill 8 - 4 3 0.000 0.000 37.830 53.110 The Calculated Drill Depth rephave been added to the Tech Report as Drill Table selectal columns 5 Back Drill 8 - 5 0.000 0.000 24.430 37.830 53.110 4 Back Drill 8 - 6 2 0.000 0.000 9.150 24.430 0.000		3	Back Drill	1	-	2	3	0.000	0.000	4.750		9.150
6 Beck Drill 8 - 4 3 0.000 0.000 37.830 53.110 have been added to the Tech Report as Drill Table selectal columns 5 Beck Drill 8 - 5 0.000 0.000 24.430 37.830 63.110 4 Beck Drill 8 - 6 5 0.000 0.000 24.430 37.830 7 Mechanical PTH 8 5 - 24.430 0.000 0.000 0.000 0.000 3 Beck Drill 8 - 7 6 0.000 7.750 9.150 24.430 9 Laser PTH 8 6 - 0.000 7.750 0.000 0.000 8 Laser PTH 8 7 - 0.000 3.350 0.000 0.000 2 Beck Drill 8 - 8 0.000 0.000 1.400 4.760		1	Mechanical PTH	1	8	-		60.860	0.000	0.000		0.000
5 Back Drill 8 - 5 0.000 0.000 24430 37.830 Report as Drill Table selectal columns 4 Back Drill 8 - 6 5 0.000 0.000 9.150 24430 7 Mechanical PTH 8 5 - 24430 0.000 0.000 0.000 3 Back Drill 8 - 7 6 0.000 0.000 4.750 9.150 9 Laser PTH 8 6 - 0.000 7.750 0.000 0.000 8 Laser PTH 8 7 - 0.000 3.350 0.000 0.000 2 Back Drill 8 - 8 0.000 1.400 4.750		6	Back Drill	8		4	3	0.000	0.000	37.830		53.110
4 Back Drill 8 - 6 5 0.000 0.000 9.150 24.430 7 Mechanical PTH 8 5 - - 24.430 0.000 0.000 0.000 3 Back Drill 8 - 7 6 0.000 0.000 4.750 9.150 9 Laser PTH 8 6 - - 0.000 7.750 0.000 0.000 8 Laser PTH 8 7 - - 0.000 3.350 0.000 0.000 2 Back Drill 8 - 8 0.000 0.000 1.400 4.750		5	Back Drill	8	-	5	4	0.000	0.000	24.430		37.830
3 Back Drill 8 - 7 6 0.000 0.000 4.750 9.150 9 Laser PTH 8 6 - 1 0.000 7.750 0.000 0.000 8 Laser PTH 8 7 - 1 0.000 3.350 0.000 0.000 2 Back Drill 8 - 8 7 0.000 1.400 4.750		4	Back Drill	8	-	6	5	0.000	0.000	9.150		24.430
9 Laser PTH 8 6 - 0.000 7.750 0.000 0.000 8 Laser PTH 8 7 - 0.000 3.350 0.000 0.000 2 Back Drill 8 - 8 7 0.000 1.400 4.750		7	Mechanical PTH	8	5	-		24.430	0.000	0.000		0.000
8 Laser PTH 8 7 - 0.000 3.350 0.000 0.000 2 Back Dnill 8 - 8 7 0.000 1.400 4.750		3	Back Drill	8	-	7	e	0.000	0.000	4.750		9.150
2 Back Drill 8 - 8 7 0.000 1.400 4.750		9	Laser PTH	8	6	-		0.000	7.750	0.000		0.000
	1	8	Laser PTH	8	7	-		0.000	3.350	0.000		0.000
		2	Back Drill	8		8	7	0.000	0.000	1.400		4.750
	ime:							ments:			Revision:	Modifica
StackName: Version: Revision Modification: Date of Revision: Editor Date: Associated Documents: Associated Documents: Associated Documents: Page	ame:							ments:		1	Revision:	Modifica


Copyright © Polar Instruments 2024

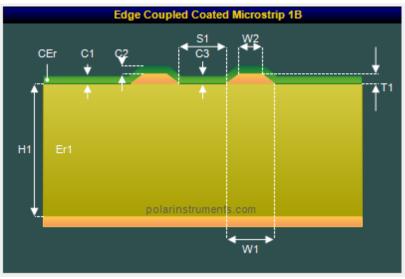
Speedstack v24.04.08 (April 2024)

New Structure More Calculations option

On the structure toolbar there is a new More Calculations button. On selecting this option the following field solver results will be calculated:


Singled-Ended Structures: Impedance (Zo), Delay, Inductance, Capacitance, Effective Dielectric Constant, Velocity of Propagation

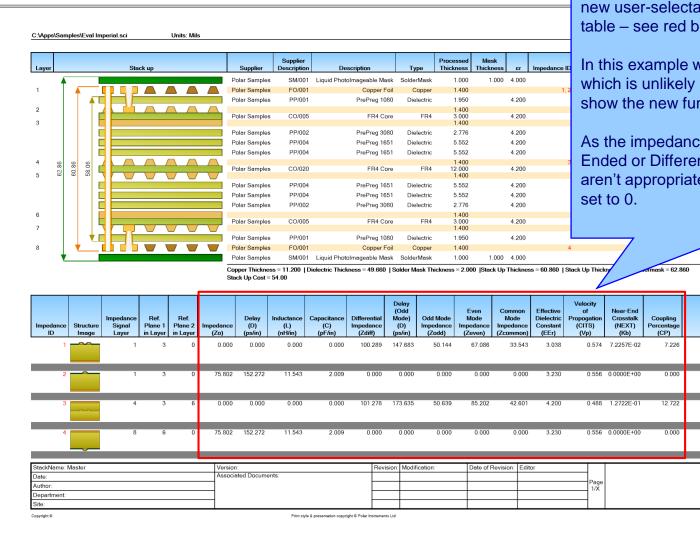
Differential Structures: Differential Impedance (Zdiff), Delay (Odd Mode), Odd Mode Impedance (Zodd), Even Mode Impedance (Zeven), Common Mode Impedance (Zcommon), Effective Dielectric Constant, Velocity of Propagation, Near-End Crosstalk (NEXT), Coupling Percentage


New Structure More Calculations option

Single-ended structure results

More Calculations			
Impedance	Zo	75.802	Close
Delay (ps/in)	D	152.272	
Inductance (nH/in)	L	11.543	
Capacitance (pF/in)	С	2.009	
Effective Dielectric Constant	EEr	3.230	
Velocity of Propogation (CITS)	Vp	0.556	

Differential structure results


More Calculations			
Differential Impedance	Zdiff	100.289	Close
Delay (Odd Mode) (ps/in)	D	147.683	
Odd Mode Impedance	Zodd	50.144	
Even Mode Impedance	Zeven	67.086	
Common Mode Impedance	Zcommon	33.543	
Effective Dielectric Constant	EEr	3.038	
Velocity of Propogation (CITS)	Vp	0.574	
Near-End Crosstalk (NEXT)	КЬ	7.2257E-02	
Coupling Percentage	CP	7.226	

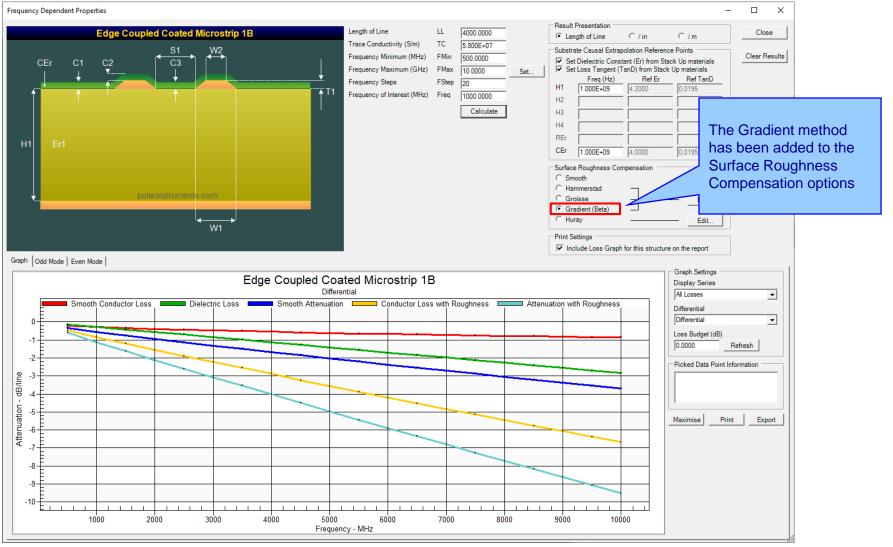
Copyright © Polar Instruments 2024

11

New Structure More Calculations option

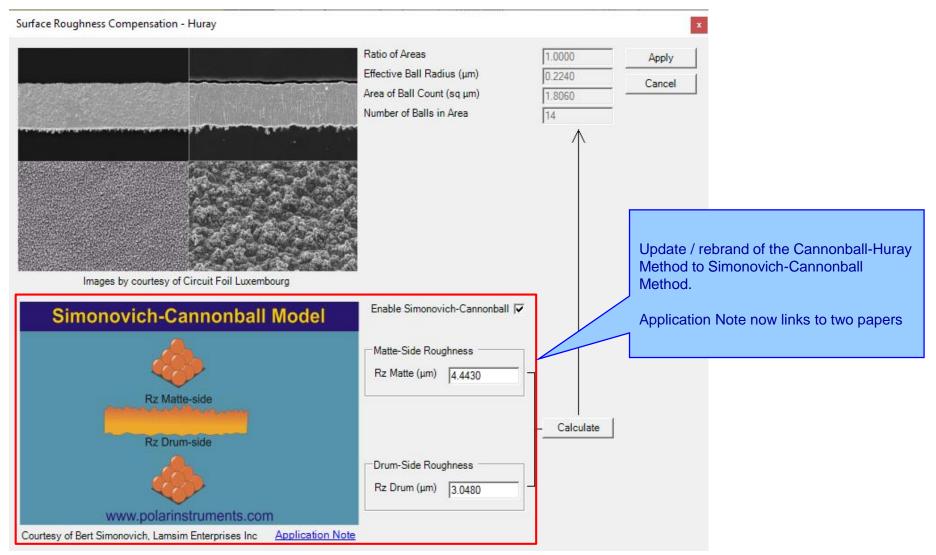
The technical report has been enhanced with 13 new user-selectable columns on the impedance table – see red box.

In this example we have selected all 13 columns, which is unlikely in production use, but is good to show the new functionality.


As the impedance table contains both Single-Ended or Differential structures the columns that aren't appropriate for a given structure type are set to 0.

polarinstruments.com

Copyright © Polar Instruments 2024



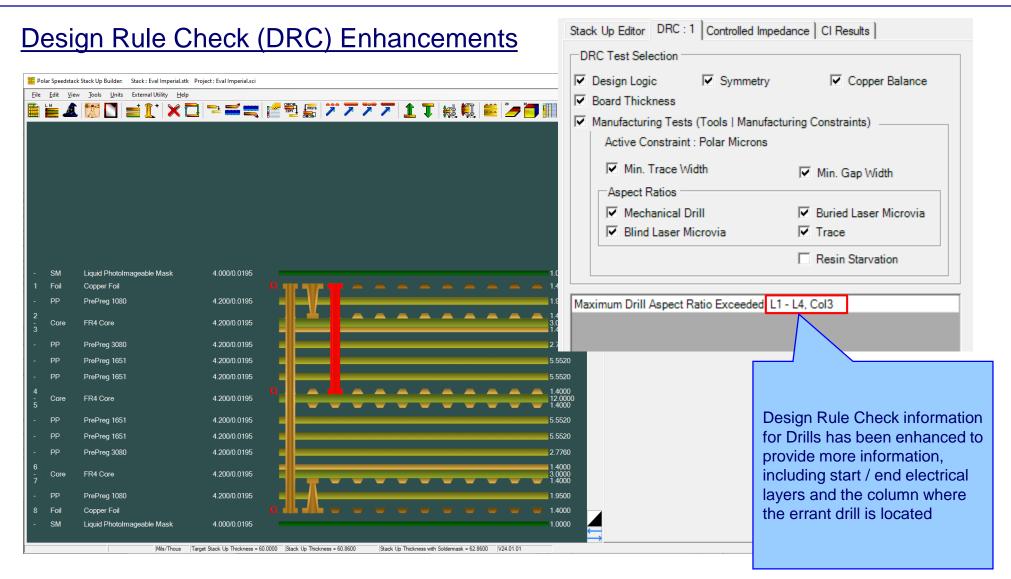
Gradient Roughness Method

Update Cannonball-Huray Method to Simonovich-Cannonball Method

Other enhancements

- New import / export XML STKX v24.00 and SSX v14.00 file formats to support the new Gradient Surface Roughness Compensation Method
- Updated to support latest BEM Calculation Engine
- FlexNet Publisher / FLEXIm v11.19.0.0 supported
- Printing: Fixed problem where the Laminate to Laminate dimension was not calculated corrected when materials spanned multiple print pages

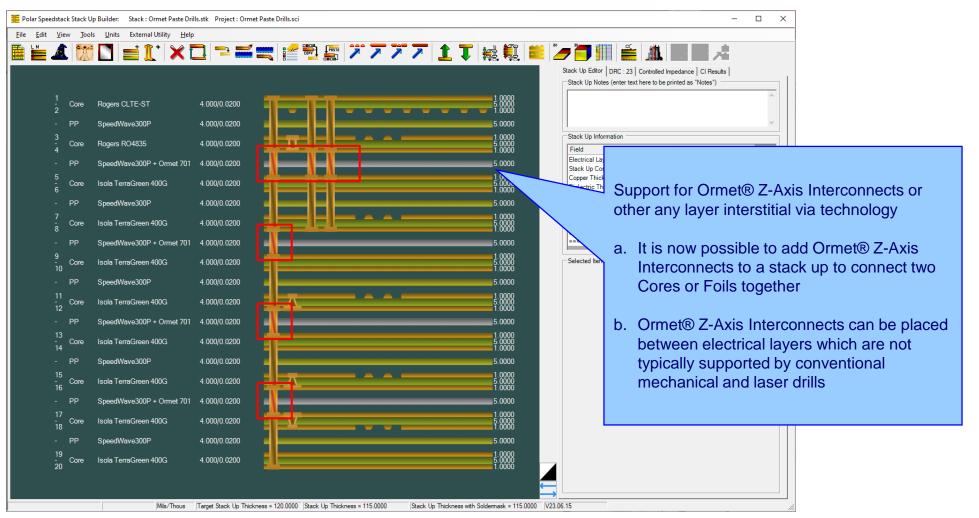
Speedstack v24.01.01 (Jan 2024)


Enhancements


 From 2024 Speedstack will be running on the Microsoft .Net Framework 4.8. It has migrated as a result of customer IT policy requests and we are working on new functionality for releases later in Q1 based on this new platform

Speedstack v23.09.01 (Sept 2023)

Other enhancements

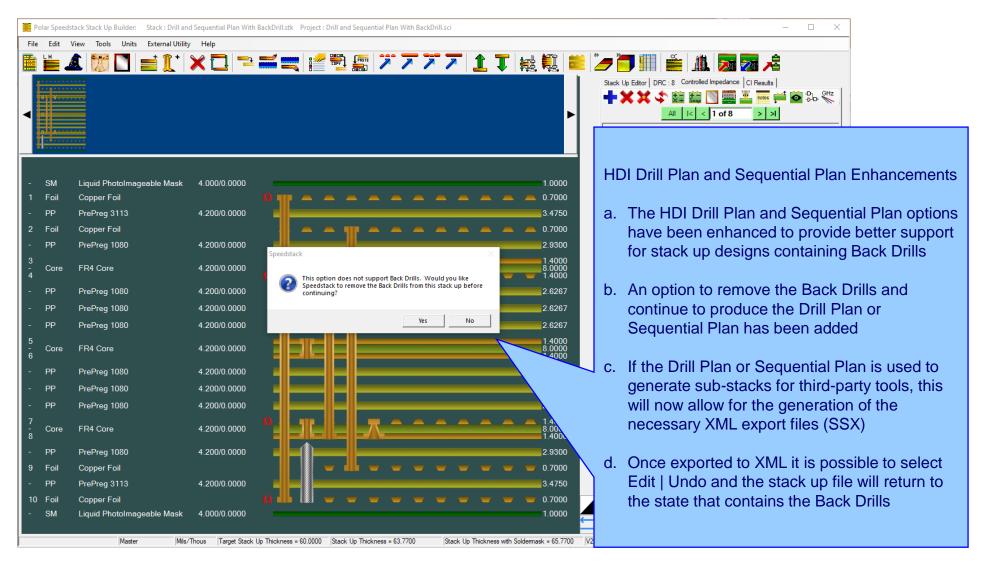

- Printing: Improvements to the Solder Mask to Solder Mask thickness line, particularly when an ident / coverlay / peelable material is above or below the Solder Mask
- Printing: Bill of Materials (BOM) table enhancements including options to enable / disable Number of Panels, Circuits Per Panel, Cost Per Circuit that appear under BOM table
- Editor: Multi-selected materials will now stay selected when right-mouse menu is used to bring up context menu

Speedstack v23.06.15 (June 2023)

Drill Enhancements including support for Ormet® Z-Axis Interconnects or other any layer interstitial via technology

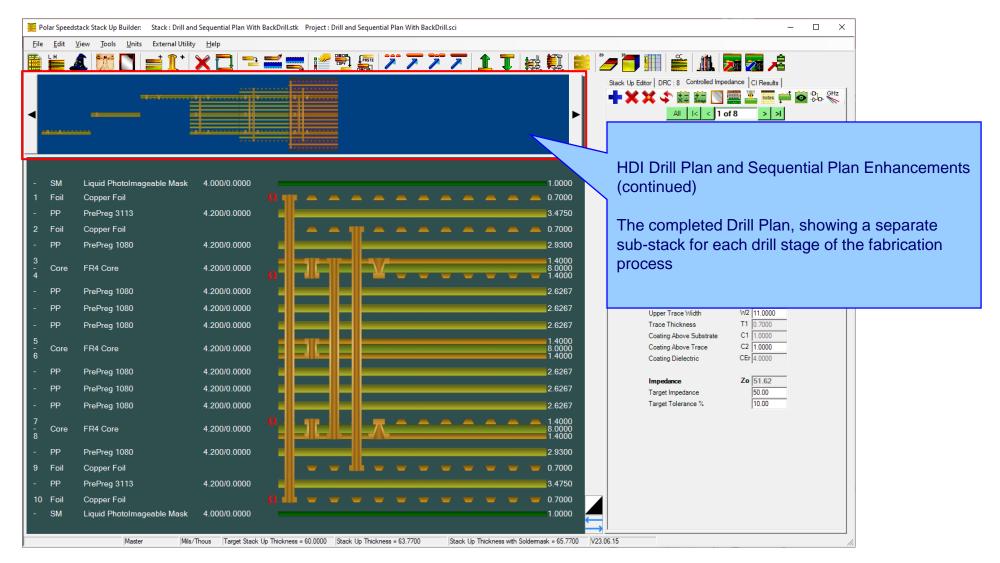
polarinstruments.com

22



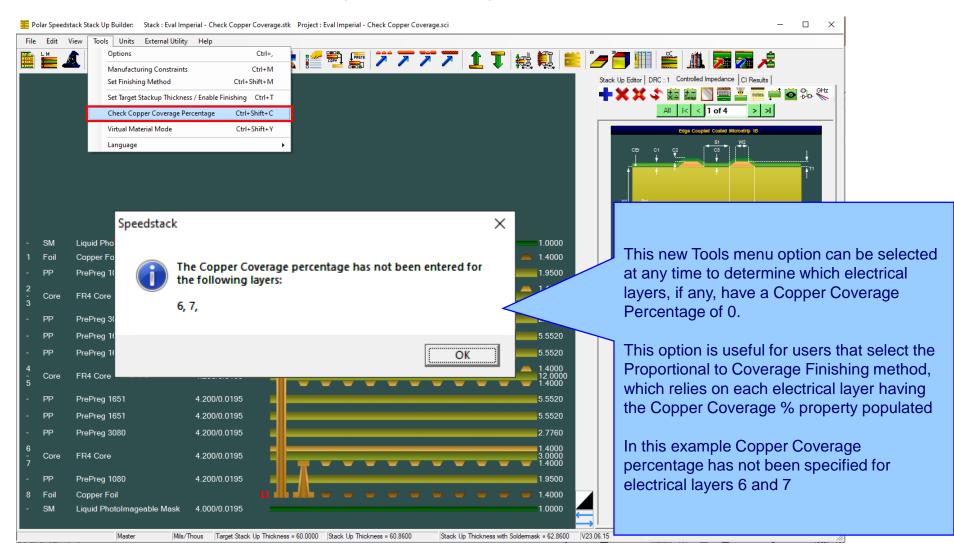
Enhancements including support for Ormet® Z-Axis Interconnects or other any layer interstitial via technology

Configuration Options	×
External Utilities Rebuild and Calculate Structures General Structure Defaults Licensing File Locations Goal Seeking User CITS Test Colours Miscellaneous Hatch	Defaults
Number of Undo Levels 5 Maximum Laser Drilled Layers 5	
Drill Validation Check This option prevents invalid drills from being added to the stack up. For instance, a drill that starts from the lower copper signaterials. Uncheck this option if you use a drilling technology that permits drills to be placed between electrical layers which typically supported by conventional mechanical and laser drills	de of core ch are not
	Support for Ormet® Z-Axis Interconnects or other any layer interstitial via technology (continued)
Appl	A new Tools Options Miscellaneous tab Dril Validation Check option has been introduced. Unchecking this option will disable the Speedstack invalid drills check in order to support the Ormet® Z-Axis Interconnects technology

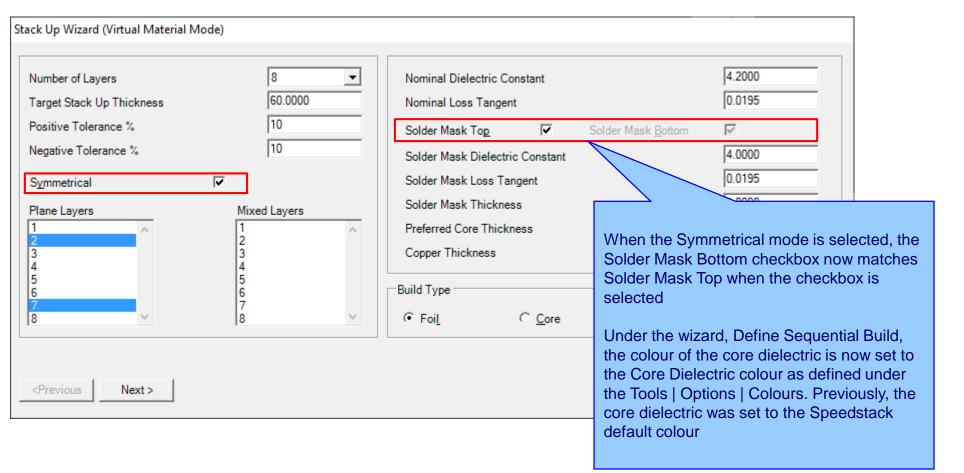

HDI Drill Plan and Sequential Plan Enhancements

24

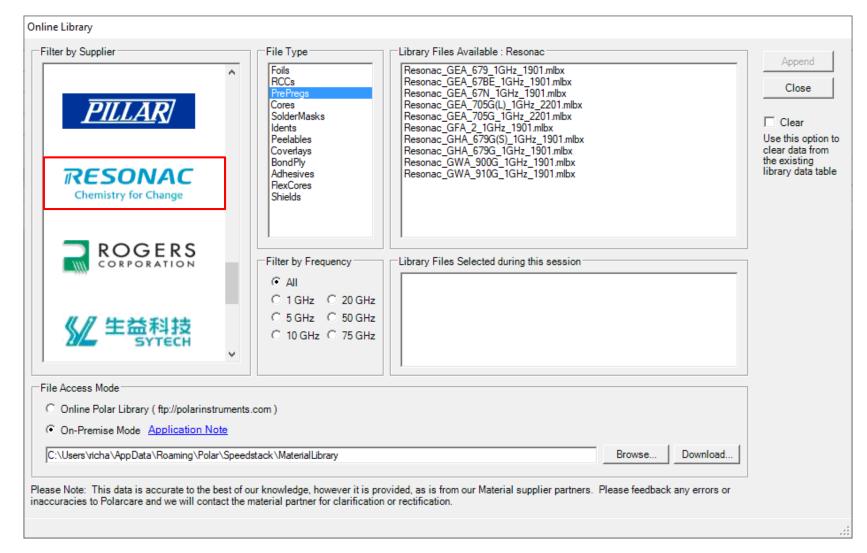
HDI Drill Plan and Sequential Plan Enhancements



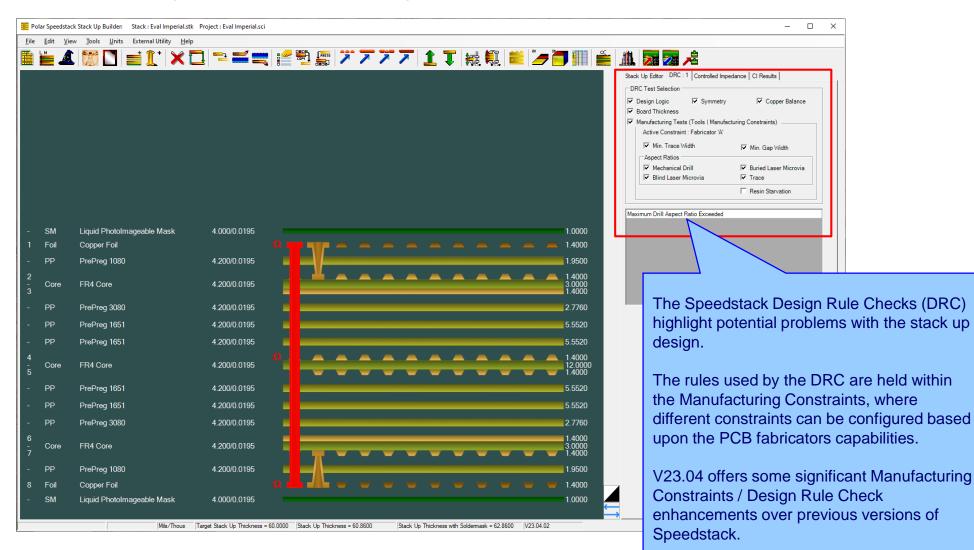
Speedstack v23.05.01 (May 2023)

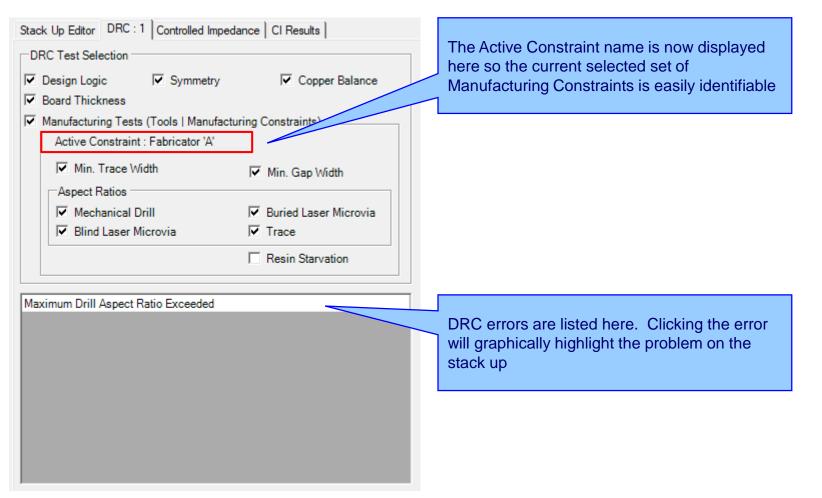


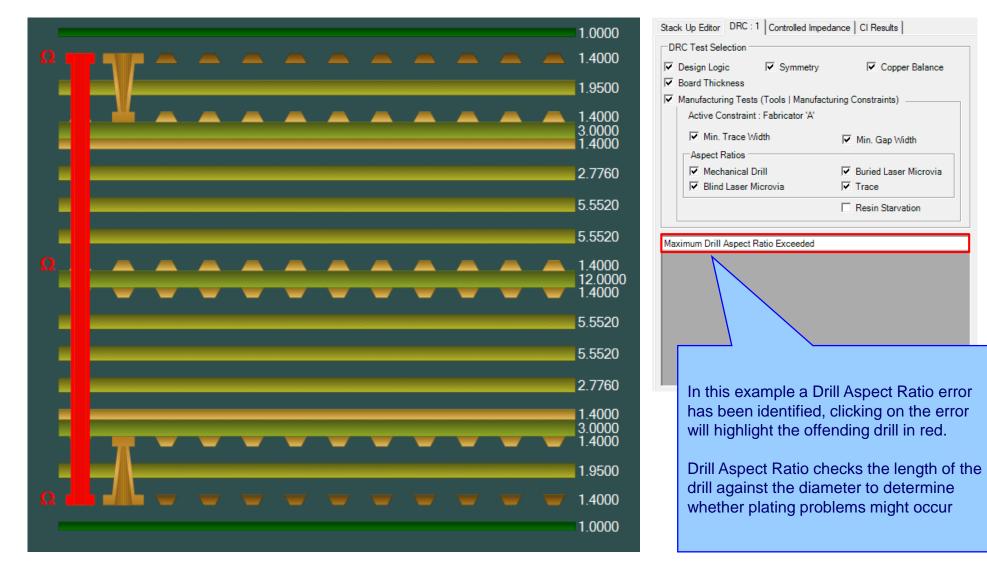
New Check Copper Coverage Percentage option



Virtual Material Wizard Improvements


Resonac materials added to the Online Library


Speedstack v23.04.02 (April 2023)



31

33

Constraint : Fabricator 'A'							
Manufacturer's Name	Blind Laser Via A. R.	Buried Laser Via A.	Mechanical Drill A. R.	Minimum Gap	Minimum Trace Width	Trace A. R.	Units
Polar Microns	0.5	0.5	8.5	75	75	1	Microns
Polar Mils	0.5	0.5	8.5	3	3	1	Mils
Polar Millimetres	0.5	0.5	8.5	0.075	0.075	1	Millimetres
Polar Inches	0.5	0.5	8.5	0.003	0.003	1	Inches
Fabricator 'A'	0.5	0.5	6	3	3	1	Mils
	row to edit, add or delete a	e constraint					
tions: Double-Click the Data Grid		e constraint					onstraints
light and Set Active Constraint	row to edit, add or delete a	e constraint			The Tools Manu option provides o Edit the constrain constraints are s	options to Ad nts. Multiple	dd, Delete e sets of
ight and Set Active Constraint	Set	active constraine	nt is		option provides of	options to Ad nts. Multiple upported, a to be check	dd, Delete e sets of llowing the ed against

Ma	anufa	cturing Constraints			Edit Constraints		\neg		
A	ctive (Constraint : Fabricator 'A'			Units				
Г		Manufacturer's Name	Blind Laser Via A. R.	Buried	Mils	C Microns	Width	Trace A. R.	Units
		Polar Microns	0.5		C Inches	C Millimetres		1	Microns
		Polar Mils	0.5					1	Mils
		Polar Millimetres	0.5		O For News	E la contra 101		1	Millimetres
		Polar Inches	0.5		Option Name	Fabricator 'A'		1	Inches
1	•	Fabricator 'A'	1 0.5		Minimum Gap	3		1	Mils
			/			10			
					Minimum Trace Width	3			
Double	e-cli	cking the Data Grid row				,			
		he Edit Constraints dialo	a.						
		arameters to be specifie	-		Mechanical Drill A.R.	6			
	· · ·	on the PCB fabricators'	add or delete a c			0.5			
			add or delete a d	onstrai	Blind Via A.R.	0.5			
apab	mue	5			Buried Via A.R.	0.5			
		Highlight Set			Banca via A.r.	10.0			
		Highlight			Trace A.R.	1			Close
					<< < 5 of 5	> >>			
					Add Delete	Done Cancel			
					Instructions				
					Add: Press Add, which will add a 'n of n' record number will increas details and select Done.				
					Delete: Press Delete to remove th 'n of n' record number will reduce. dialog.	e existing constraint. Notice the Then select Done to close the			
0					Edit: Edit the existing constraint a dialog.	nd select Done to close the			

Speedstack v23.03.01 (March 2023)

Material Library Filter / Search Enhancements

C:\Apps\Samples\Speedstack Imperial.mlbx	— 🗆 X
🐳 🗰 🖡 🏨 🎼 🎁 🗮 🖽 🞹 🐨	
Filter Field Operand Criteria Logic Description V V	Row Filter Meta Description Like "80"
Foils Prepregs RCCs Cores Solder Masks Ident Inks Peelable Masks Coverlays Bond Ply Adhesive Supplier Supplier Description Description Description Description Polar Samples PP/001 PrePreg 1080 PrePreg 3080	Flexible Cores Shie Stock Nu Stock Nu 300-001 300-001
	 Completely new and improved filtering system implemented for the Material Library, Add Material and Swap Material options The filter options are now placed above the selected material Data Grid, so they are always accessible and easily editable The current filter settings are shared between the Material Library, Add Material and Swap Material options. When the Material Library, Add Material and Swap Material options are closed, the current filters are automatically reapplied when these options are next used Filters are also retained between Speedstack sessions Please Note: the previous filtering system, including the ability to Load and Save Filter files (.mlf), has now been retired. Rather than needing to use Load and Save, the current filter settings are automatically saved in order that they can be shared between the Material Library, Add Material
Jick on a material row to edit it	and Swap Material options

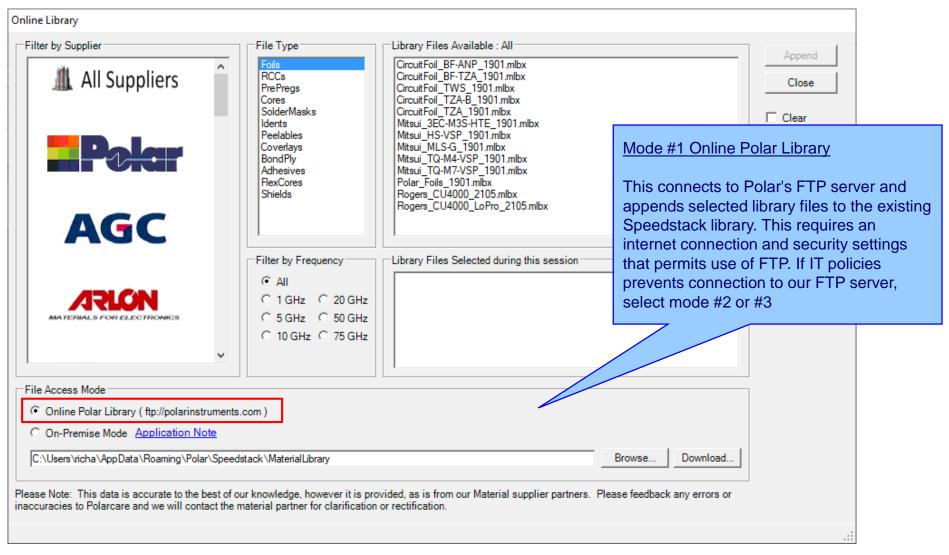
Copyright © Polar Instruments 2024

Material Library Filter / Search Enhancements

Sw	ap Foil C:\Apps\S	amples\Speedstack Impe	erial.mlbx				X
EXIT ➡							
		Operand	Criteria 1.4 V V V V V V V V	Logic	Row Filter	= 1.4	
	Supplier	Supplier Description	Description		Stock Number	Cu Base Thickness	s Cost Lead Time
•	Polar Samples	FO/002	Copper Foil		100-002	1.4	Cop 0
							Example #1 Search for Foil materials where the Copper Thickness = 1.4 mils
4							

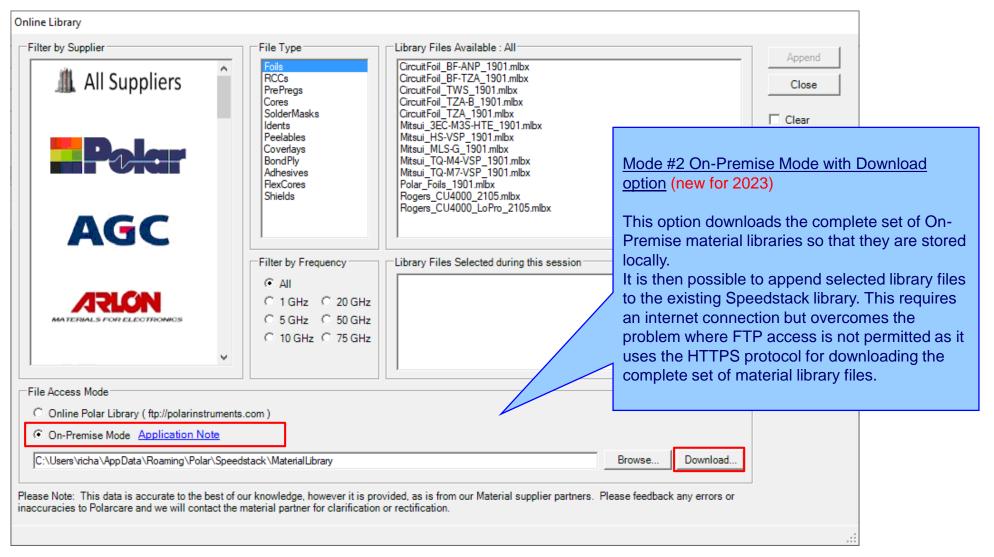
Material Library Filter / Search Enhancements

📒 Swap Core C:\Apps\Samples\Speedstack Imperial.mlbx	X
Filter Operand Criteria BaseThickness >= > BaseThickness < >= V	Logic Row Filter AND
Supplier Supplier Description Description Polar Samples CO/010 FR4 Core Polar Samples CO/011 FR4 Core Polar Samples CO/012 FR4 Core Polar Samples CO/013 FR4 Core Polar Samples CO/014 FR4 Core Polar Samples CO/015 FR4 Core Polar Samples CO/016 FR4 Core Polar Samples CO/016 FR4 Core Polar Samples CO/016 FR4 Core Polar Samples CO/017 FR4 Core Polar Samples CO/017 FR4 Core Polar Samples CO/018 FR4 Core	Stock Number Dielectric Base Thickness Thickness Dielectric Constant Loss Tangent 400-010 5 5 4.2 0.0195 400-012 5 4.2 0.0195 400-013 6 400-014 6 400-015 6 6 400-015 400-016 8 400-017 8 400-018 8 Two search criteria are specified, for Core materials where the Base Thickness >= 5 mils and Base Thickness <= 10 mils
4	



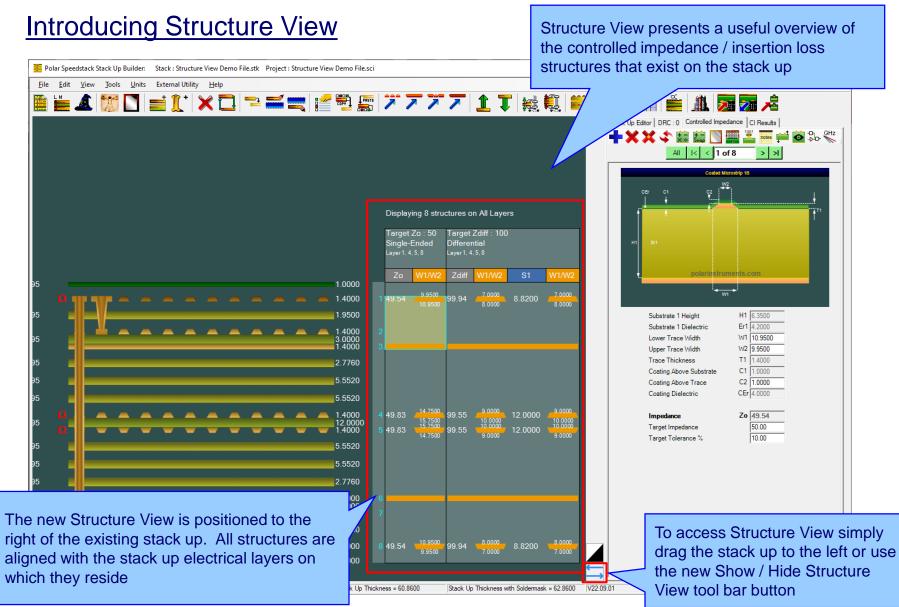
Material Library Filter / Search Enhancements

Swap Prepreg C:\Apps\Sa	amples\Speedstack Imperial.ml	bx				×
Filter Field Description	Operand Crit	-		Row Filter	<e **80**<="" td=""><td></td></e>	
			<u> </u>			
			•			
			_			
Polar Samples PP	upplier Description 9/001 9/002	Description PrePreg 1080 PrePreg 3080		Stock Number 300-001 300-002	Dielectric Base Thick 3 3	ness Dickness Dielectric Constant Loss Tangent 3 4.2 0.0195
						Example #3 A wildcard search criteria has been specified, search for Prepreg materials where the Description contains '80'. Description Like *80* will search a text / string field for the presence of 80 anywhere in the field
4						٩



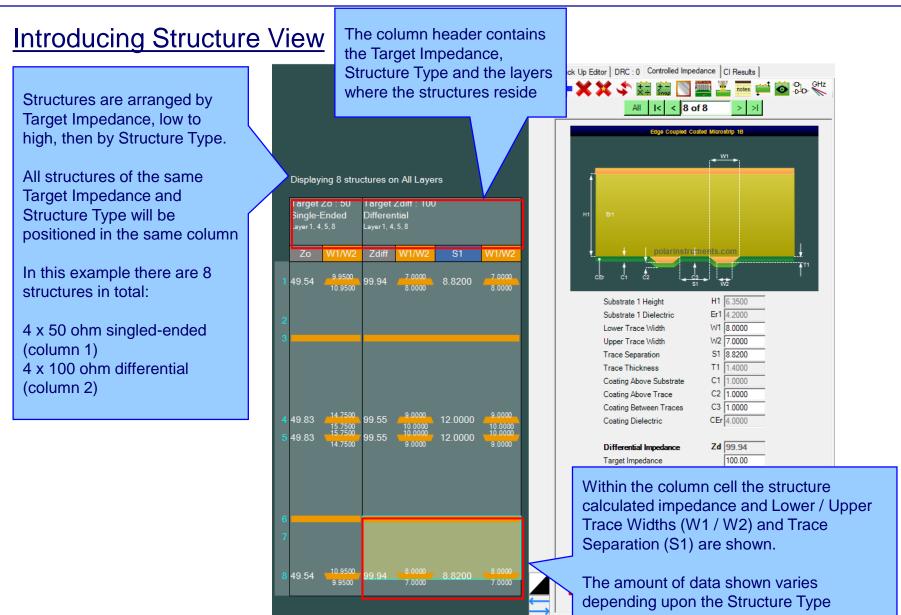
Online Library – Now supports three modes

Online Library – Now supports three modes


Online Library – Now supports three modes

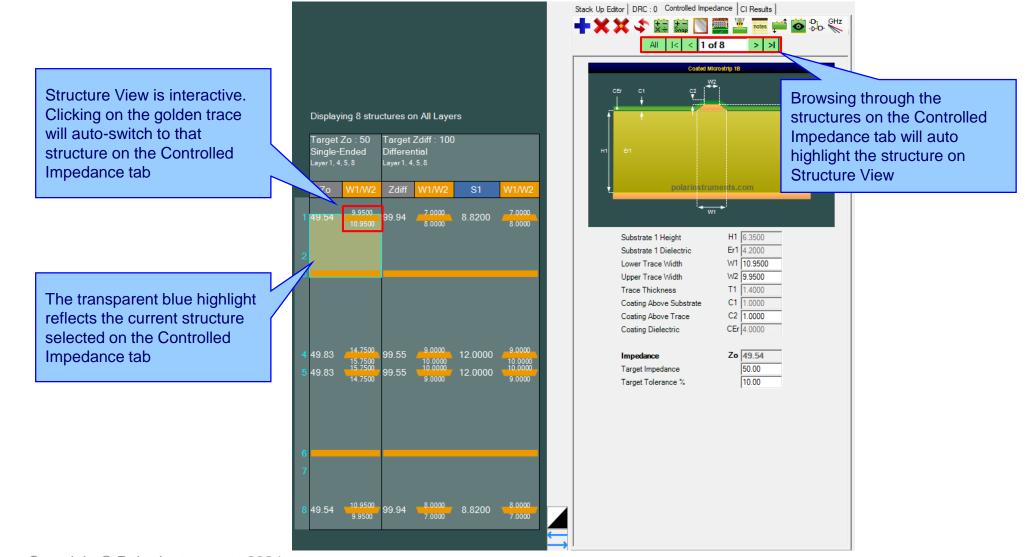
Online Library			
Filter by Supplier	File Type Foils RCCs PrePregs Cores SolderMasks Idents Peelables Coverlays BondPly Adhesives RexCores Shields Filter by Frequency © All © 1 GHz © 20 GHz © 5 GHz © 50 GHz © 10 GHz © 75 GHz	Library Files Available : All CircuitFoil_BF-ANP_1901.mlbx CircuitFoil_BF-TZA_1901.mlbx CircuitFoil_TZA-B_1901.mlbx CircuitFoil_TZA_1901.mlbx Mitsui_3EC-M3S-HTE_1901.mlbx Mitsui_HS-VSP_1901.mlbx Mitsui_TQ-M4-VSP_1901.mlbx Mitsui_TQ-M4-VSP_1901.mlbx Polar_Foils_1901.mlbx Rogers_CU4000_2105.mlbx Rogers_CU4000_LoPro_2105.mlbx	Append Close Close Clear Mode #3 On-Premise Mode with Browse option A complete set of On-Premise material libraries are supplied as a Zip file, which can be Unzipped to a chosen folder location and then Browse to that location. It is then possible to append selected library files to the existing Speedstack library. This method is suitable where users have no internet connection so options #1 and #2 are not available. Please contact polarcare@polarinstruments.com to receive the Zip file and Unzip to a suitable
File Access Mode Online Polar Library (ftp://polarinstrume On-Premise Mode <u>Application Note</u> S:\Software\Speedstack\MaterialLibrary Please Note: This data is accurate to the best of inaccuracies to Polarcare and we will contact the	of our knowledge, however it is prov	vided, as is from our Material supplier partners. Por rectification.	folder location that is accessible by Speedstack Browse Download

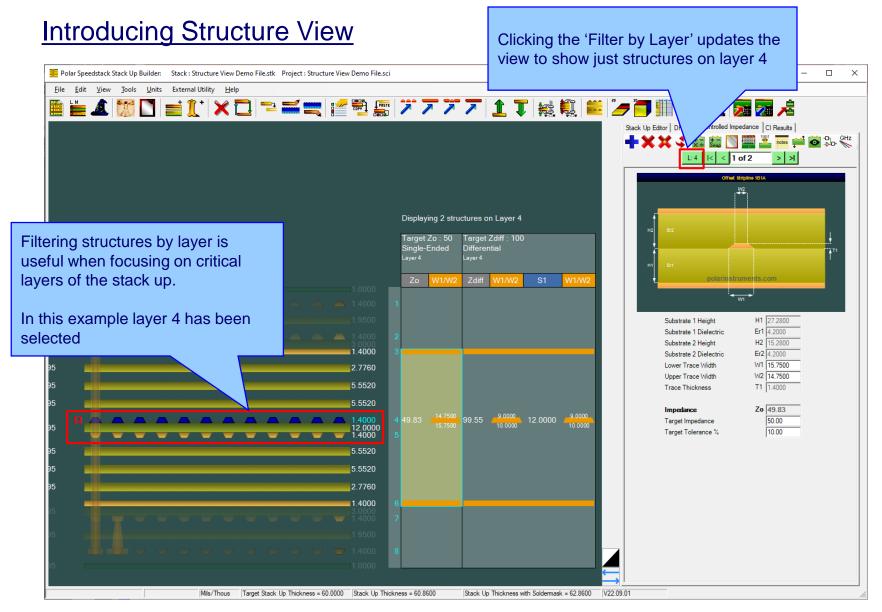
Speedstack v22.11.01 (November 2022)



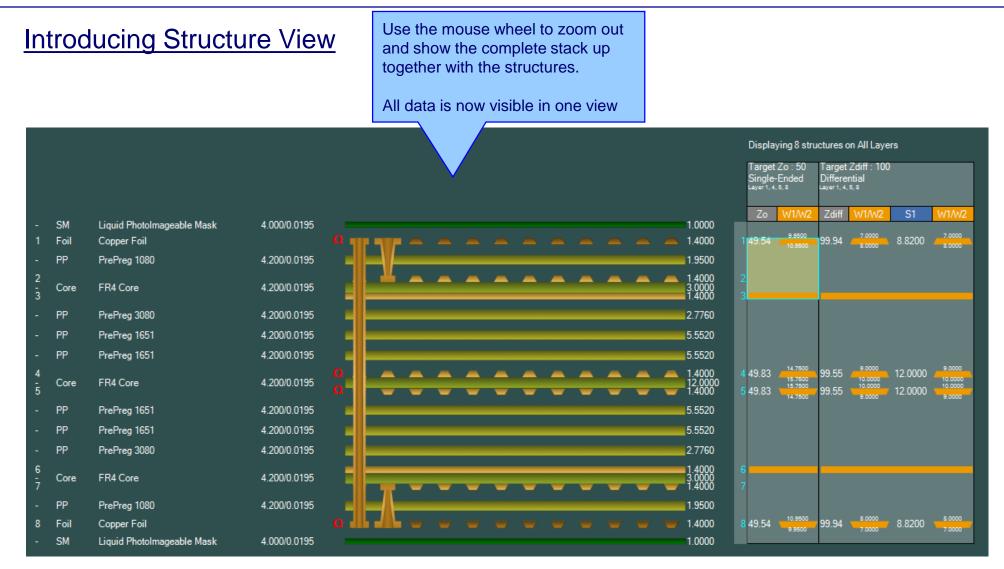
Copyright © Polar Instruments 2024

polarinstruments.com

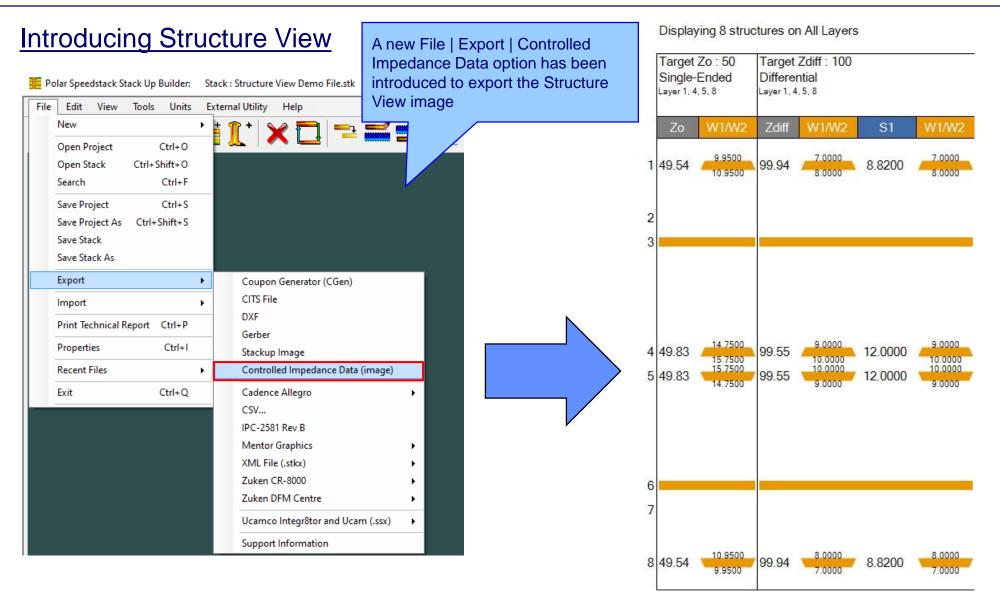

45

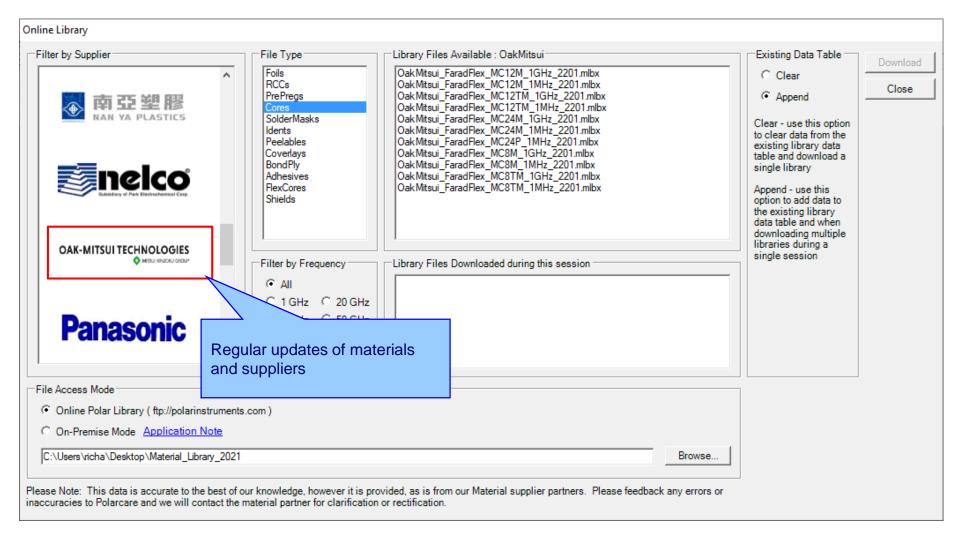


Introducing Structure View


Speedstack 2021 - 2024 Updates

polarinstruments.com


Copyright © Polar Instruments 2024


Copyright © Polar Instruments 2024

Online Library enhancements

Speedstack v22.07.20 (July 2022)

Introducing Grid View

Grid View presents the current stack up in an editable data grid form to allow for easy editing of multiple materials from a single dialog

Stack Up Collection Index	Material Class	Material Element	Electrical Layer	Material Layer Type ID	Layer Name	Description	Processed Thickness	Dielectric Constant	Loss Tangent
0	CSTSolderMask	Mask		SM		Liquid PhotoImageable Mask	1.0000	4.0000	0.019
1	CSTFoil	Copper	1	Foil	Тор	Copper Foil	1.4000		
2	CSTPrePreg	Dielectric		PP		PrePreg 1080	1.9500	4.2000	0.019
3	CSTCore	UpperCopper	2		Inner 2		1.4000		
3	CSTCore	Dielectric		Core		FR4 Core	3.0000	4.2000	0.019
3	CSTCore	LowerCopper	3		Inner 3		1.4000		
4	CSTPrePreg	Dielectric		PP		PrePreg 3080	2.7760	4.2000	0.019
5	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.019
6	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.019
7	CSTCore	UpperCopper	4		Inner 4		1.4000		
7	CSTCore	Dielectric		Core		FR4 Core	12.0000	4.2000	0.019
7	CSTCore	LowerCopper	5		Inner 5		1.4000		
8	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.019
9	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.019
10	CSTPrePreg	Dielectric				PrePreg 3080	2.7760	4.2000	0.019
11	CSTCore	UpperCoppe			Inner 6		1.4000		
	llows for q	uick aditi	og of kov	/ stack		FR4 Core	3.0000	4.2000	0.019
			• •		Inner 7		1.4000		
	ion such as					PrePreg 1080	1.9500	4.2000	0.019
	Thickness,	Dielectri	c Consta	ant and	Bottom	Copper Foil	1.4000		
s Tange	nt.					Liquid PhotoImageable Mask	1.0000	4.0000	0.0195

/ then be edited with Excel

ent columns are editable, other colum

The stack up data from Grid View can also be edited in Microsoft Excel using the Grid View copy and paste functions

IderMask.MaskThickness, Coverlay. Changes in Grid View can be saved back to the original stack up design

polarinstruments.com

Cancel

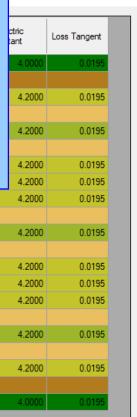
Apply

Introducing Grid View

tack Up follection ndex	Material Class	Material Element	Electrical Layer	Mate Type	some fields are le	o preserve stack integrity – ocked.	Processed Thickness	Dielectric Constant	Loss Tangent
	CSTSolderMask	Mask		SM			1.0000	4.0000	0.0195
1	CSTFoil	Copper	1	Foil			1.4000		
2	CSTPrePreg	Dielectric		PP			1.9500	4.2000	0.0195
3	CSTCore	UpperCopper	2		miler 2		1.4000		
3	CSTCore	Dielectric		Core		FR4 Core	3.0000	4.2000	0.0195
3	CSTCore	LowerCopper	3		Inner 3		1.4000		
4	CSTPrePreg	Dielectric		PP		PrePreg 3080	2.7760	4.2000	0.0195
5	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.0195
6	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.0195
7	CSTCore	UpperCopper	4		Inner 4		1.4000		
7	CSTCore	Dielectric		Core		FR4 Core	12.0000	4.2000	0.0195
7	CSTCore	LowerCopper	5		Inner 5		1.4000		
8	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.0195
9	CSTPrePreg	Dielectric		PP		PrePreg 1651	5.5520	4.2000	0.0195
10	CSTPrePreg	Dielectric		PP		PrePreg 3080	2.7760	4.2000	0.0195
11	CSTCore	UpperCopper	6		Inner 6		1.4000		
11	CSTCore	Dielectric		Core		FR4 Core	3.0000	4.2000	0.0195
11	CSTCore	LowerCopper	7		Inner 7		1.4000		
12	CSTPrePreg	Dielectric		PP		PrePreg 1080	1.9500	4.2000	0.0195
13	CSTFoil	Copper		Foil	Bottom	Copper Foil	1.4000		
						Liquid PhotoImageable Mask	1.0000	4.0000	0.0195

_

 \times


	ntrodu	ucing	Grid \	<u>/iew</u>			G	Grid View has many uses, some are highlighted here:	
(Grid View						1.	. Key information for the whole stack up can be edited single dialog / screen	from a
	Stack Up Collection Index	Material Class	Material Element	Electrical Layer	Material Layer Type ID	Lay	2.		-
	0	CSTSolderMask	Mask		SM			quickly evaluated by updating the Processed Thickne	ess.
	1	CSTFoil	Copper	1	Foil	Тор		Dielectric Constant and Loss Tangent cells. The impa	· · · ·
	2	CSTPrePreg	Dielectric		PP			these changes on stack up thickness, controlled impe	
	3	CSTCore	UpperCopper	2		Inne		o i i i	
	3	CSTCore	Dielectric		Core			and insertion loss calculations can then be quickly ev	
	3	CSTCore	LowerCopper	3		Inne	3.	· · · · · · · · · · · · · · · · · · ·	
	4	CSTPrePreg	Dielectric		PP		4.	 Layer Names can be quickly assigned to electrical lay 	/ers
	5	CSTPrePreg	Dielectric		PP				
	6	CSTPrePreg	Dielectric		PP				5.5520
	7	CSTCore	UpperCopper	4		Inne	r 4		1.4000
	7	CSTCore	Dielectric		Core			FR4 Core	12.0000
	7	CSTCore	LowerCopper	5		Inne	r 5		1.4000
	8	CSTPrePreg	Dielectric		PP			PrePreg 1651	5.5520
	9	CSTPrePreg	Dielectric		PP			PrePreg 1651	5.5520
	10 CSTPrePreg Dielectric PP							PrePreg 3080	2.7760
	11	CSTCore	UpperCopper	6		Inne	r 6		1.4000
	11	CSTCore	Dielectric		Core			FR4 Core	3.0000

PrePreg 1080

Liquid PhotoImageable Mask

Copper Foil

= 1 = 0 = 1 > 1. . Intr

Apply Cancel

1.4000

1.9500

1.4000

Use the right-click menu to copy / paste the Grid View to the clipboard - the data may then be edited with Excel Layer Name, Description, Processed Thickness, Dielectric Constant and Loss Tangent columns are editable, other columns are read-only

7

8

Processed Thickness = Copper.FinishedThickness, Dielectric.IsolationDistance, SolderMask.MaskThickness, Coverlay.FinishedThickness

PP

Foil

Inner 7

Bottom

CSTCore

CSTPrePreg

CSTFoil

11

12

13

14

LowerCopper

Dielectric

Copper

Mask



56

View							 following cells are amended. Layer Names have been changed and						
ack Up ollection dex	Material Class	Material Element	Electrical Layer	Material Layer Type ID	Layer Name	Description	ed Thicknes						
0	CSTSolderMask	Mask		SM		Liquid PhotoImageable Mask	1.0000	4.0000	0.019				
1	CSTFoil	Copper	1	Foil	Тор	Copper Foil	1.4000						
2	CSTPrePreg	Dielectric		PP		PrePreg 1080	1.9500	4.2000	0.019				
3	CSTCore	UpperCopper	2		Inner 2		1.4000						
3	CSTCore	Dielectric		Core		FR4 Core	3.0000	4.2000	0.019				
3	CSTCore	LowerCopper	3		Power		1.4000						
4	CSTPrePreg	Dielectric		PP		PrePreg 3080	2.5000	4.2000	0.019				
5	CSTPrePreg	Dielectric		PP		PrePreg 1651	2.5000	4.2000	0.019				
6	CSTPrePreg	Dielectric		PP		PrePreg 1651	6.0000	4.2000	0.019				
7	CSTCore	UpperCopper	4		Inner 4		1.4000						
7	CSTCore	Dielectric		Core		FR4 Core	12.0000	4.2000	0.019				
7	CSTCore	LowerCopper	5		Inner 5		1.4000						
8	CSTPrePreg	Dielectric		PP		PrePreg 1651	6.0000	4.2000	0.019				
9	CSTPrePreg	Dielectric		PP		PrePreg 1651	6.0000	4.2000	0.019				
10	CSTPrePreg	Dielectric		PP		PrePreg 3080	2.5000	4.2000	0.019				
11	CSTCore	UpperCopper	6		Ground		1.4000						
11	CSTCore	Dielectric		Core		FR4 Core	3.0000	4.2000	0.019				
11	CSTCore	LowerCopper	7		Inner 7		1.4000						
12	CSTPrePreg	Dielectric		PP		PrePreg 1080	1.9500	4.2000	0.019				
13	CSTFoil	Copper	8	Foil	Bottom	Copper Foil	1.4000						
14	CSTSolderMask	Mask		SM		Liquid PhotoImageable Mask	1.0000	4.0000	0.019				
the right-o	click menu to copy /	paste the Grid V	iew to the clip	board - the data ma	ay then be edited with Exc	el		Apply	Ca				

58

Polar Speedst		der: Stack : Ev nits External (al Imperial.stk Jtility Help	Project : Eval	Imperial.sci					Controlled Impe		click me	thin Grid View use the right- nu and select the Copy to d option.
	Grid View										- 🗆	×	
	Stack Up Collection Index	Material Class	Material Element	Electrical Layer	Material Laye Type ID	Layer Name	Description		Processed Thickness	Dielectric Constant	Loss Tangent	~	
	0	CSTSolderMask	Mask		SM		Liquid PhotoImageable I	Mask	1.0000	4.0000	0.0195		
	1	CSTFoil	Copper	1	Foil	Тор	Copper Foil		1.4000				
	2	CSTPrePreg	Dielectric		PP		PrePreg 1080		1.9500		0.0195		
	3	CSTCore	UpperCopper	2	Core	Inner 2	FR4 Core		1.4000		0.0195		
	3	CSTCore CSTCore	Dielectric LowerCopper	3	Core	Inner 3	FR4 Core		1.4000		0.0195	-	
- SM	4	CSTPrePreg	Dielectric		PP		PrePreg 3080		2.7760		0.0195		
1 Foil	5	CSTPrePreg	Dielectric		PP		PrePreg 1651		5.5520	4.2000	0.0195		
	6	CSTPrePreg	Dielectric		PP		PrePreg 1651	Copy to Clipboard (for Excel) Paste from Clipboard (from Excel)	5.5520		0.0195		
- PP	7	CSTCore	UpperCopper	4		Inner 4	TD (C	Paste nom cipboard (nom Excer)	1.4000		0.0107		
2 - Core	7	CSTCore CSTCore	Dielectric LowerCopper	5	Core	Inner 5	FR4 Core		12.0000		0.0195		
3	8	CSTPrePreg	Dielectric		PP		PrePreg 1651		5.5520		0.0195		
- PP	9	CSTPrePreg	Dielectric		PP	/	PrePreg 1651		5.5520				
- PP	10	CSTPrePreg	Dielectric		PP		PrePreg 3080		2.7760	4.2000	0.0195		
- PP	11	CSTCore	UpperCopper	6		Inner 6			1.4000				
	11	CSTCore	Dielectric				FR4 Core		3.0000		0.0195		
4 - Core	11	CSTRue	Lower	_	00	Inner 7	PrePreg 1080		1.4000		0.0195		
						Bottom	Copper Foil		1.4000		0.0135		
The Copy	/ Pact	o ontic	ne all	ow fo	r tho		Liquid PhotoImageable I	Mask	1.0000	4.0000	0.0195		
contents o	of Grid	View t	o be p	asse	d to	ay then be edited with E	ixcel			Appl	ly Cancel		
Excel, ma							ble, other columns are read-only ness, Coverlay,FinishedThickness			Appi	u Cance		
		-						3.0000					
copying e	xisting	data f	rom ot	iner				1.9500					
spreadshe	eets or	editin	a usina	a the									
•			- ·	•									
power of I								1.0000					
resultant I	Excel d	lata ba	ack to	Grid		000 Stack Up Thickn	0000 = 60 9600	ickness with Soldermask = 62.8600 V22.07	20				
View.						Jorack ob Thickn	iess - uu.oouu jalack Up In	UKI IESS WILLI SULUEITIIIdSK = 02.0000 VZZ.07	20			1	
VIGW.													

File Paste	Home Insert Page Layout F Cut Calibri 11 Copy * Format Painter B I U *	Formulas Data	= = ≫ - 8 ^b Wrap Text 0 = = • = • = ■ □ Merge & Center - 0		Book1 - Excel 7 Tell me what you want to do	ormal Bad Calculation	Good • Check Cell •		ontent	Excel is to a	a WOr	kshe	e the clipbo et	ard
Clip	board 🕞 Font	Fa	Alignment 🕞	Number	F2	Styles		с	ells		Editing		~	
A1	▼ : × ✓ fx Stac	ck Up Collection Inc	lex										~	
	Δ Β	C	D E	F	G	н	1	к	1	м	N	0		
1 Stack		5	t Electrical Layer Material Layer Type I		-	Processed Thickness Diele	ectric Constant Loss Tang							
2	0 CSTSolderMas		SM	o cayer Nan	Liquid PhotoImageable Mask	1	v	195						
3	1 CSTFoil	Copper	1 Foil	Тор	Copper Foil	1.4								
4	2 CSTPrePreg	Dielectric	PP		PrePreg 1080	1.95	4.2 0.0	195						
5	3 CSTCore	UpperCopper	2	Inner 2		1.4								
6	3 CSTCore	Dielectric	Core		FR4 Core	3	4.2 0.0	195						
7	3 CSTCore	LowerCopper	3	Inner 3		1.4								
8	4 CSTPrePreg	Dielectric	PP		PrePreg 3080	2.776	4.2 0.0	195						
9	5 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2 0.0	195						
10	6 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552		195						
11	7 CSTCore	UpperCopper	4	Inner 4		1.4								
12	7 CSTCore	Dielectric	Core		FR4 Core	12	4.2 0.0	195						
13	7 CSTCore	LowerCopper	5	Inner 5		1.4								
14	8 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2 0.0	195						
15	9 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2 0.0	195						
16	10 CSTPrePreg	Dielectric	PP		PrePreg 3080	2.776	4.2 0.0	195						
17	11 CSTCore	UpperCopper	6	Inner 6		1.4								
18	11 CSTCore	Dielectric	Core		FR4 Core	3	4.2 0.0	195						
19	11 CSTCore	LowerCopper	7	Inner 7		1.4								
20	12 CSTPrePreg	Dielectric	PP		PrePreg 1080	1.95	4.2 0.0	195						
21	13 CSTFoil	Copper	8 Foil	Bottom	Copper Foil	1.4								
22	14 CSTSolderMask	k Mask	SM		Liquid PhotoImageable Mask	1	4 0.0	195						
23														
24														
25														
26														
27														
28														
29 30														
30														
31														
33														
34													-	
	Sheet1 (+)					: •								
Ready 📲							1493421 Count: 166 Sum:	300.3135		─ -		+ 100%	·	

<u>Using G</u>	irid V	<u>iew v</u>	vith Micros	oft E	<u>Excel – S</u>	<u>tep #3</u>			ep_#3				
딙 ㅎ · ♂ · ∓ File Home Insert	Page Layout F	ormulas Data	Review View Developer Help	Team Ç	Book1 - Excel Tell me what you want to do								ss cells been changed
Copy -			= _ ≫ - ₽ Wrap Text = =	General ♀ ~ % ᠈	€0 .00 Conditional Format as Ne	ormal Bad Calculation	Good Check Cell	E In:					
Clipboard 5	Font	G	Alignment	Number	Formatting * Table *	Styles		Cells	Ť	E	Filter * So diting	elect *	
112 × : ×	√ <i>f</i> × 4.2											~	
Δ	B	с	D E	F	G	н		к	L	м	N	0	
1 Stack Up Collection Inde	ex Material Class	-	t Electrical Layer Material Layer Type			Processed Thickness Diele	ctric Constant Loss Tang						
2	0 CSTSolderMask		SM		Liquid PhotoImageable Mask	1		195					
	1 CSTFoil	Copper	1 Foil	Тор	Copper Foil	1.5							
4	2 CSTPrePreg	Dielectric	PP		PrePreg 1080	2.1	4.2 0.0	195					
5	3 CSTCore	UpperCopper	2	Inner 2		1.4							
6	3 CSTCore	Dielectric	Core		FR4 Core	3	4.2 0.0	195					
7	3 CSTCore	LowerCopper	3	Inner 3		1.4							
8	4 CSTPrePreg	Dielectric	PP		PrePreg 3080	2.776	4.2 0.0	195					
9	5 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2 0.0	195					
10	6 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2 0.0	195					
11	7 CSTCore	UpperCopper	4	Inner 4		1.4							
12	7 CSTCore	Dielectric	Core		FR4 Core	10	4.2 0.0	195					
13	7 CSTCore	LowerCopper	5	Inner 5		1.4							
14	8 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552		195					
15	9 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552		195					
	10 CSTPrePreg	Dielectric	PP		PrePreg 3080	2.776	4.2 0.0	195					
	11 CSTCore	UpperCopper	6	Inner 6		1.4							
	11 CSTCore	Dielectric	Core		FR4 Core	3	4.2 0.0	195					
	11 CSTCore	LowerCopper	7 PP	Inner 7	Dec Dec a 1000	1.4 2.1	4.2 0.0	105					
	12 CSTPrePreg 13 CSTFoil	Dielectric	8 Foil	Dettem	PrePreg 1080	1.5	4.2 0.0	195					
	14 CSTSolderMask	Copper	SM	Bottom	Copper Foil Liquid PhotoImageable Mask	1.5	4 0.0	195					
23	14 CS150IdeIWask	IVIDSK	5101		Elquid Photoimageable Mask	1	4 0.0	195					
24													
25													
26													
27													
28		N N	OTE: In order to	preser	ve stack								
29				-									
30			tegrity, materials	should	I not be								
31													
32		a	dded or removed	attins	siep.								
33		Δ	dd/remove of ma	toriale	needs to be								
34												-	
← → Sheet1	+	n	erformed in the S	peeds	ack editor to	4						Þ	
Ready				-				E		─ -	1	+ 100%	
		a	llow validation to	be per	formed.								

Copyright © Polar Instruments 2024

□ **5**,∂,,

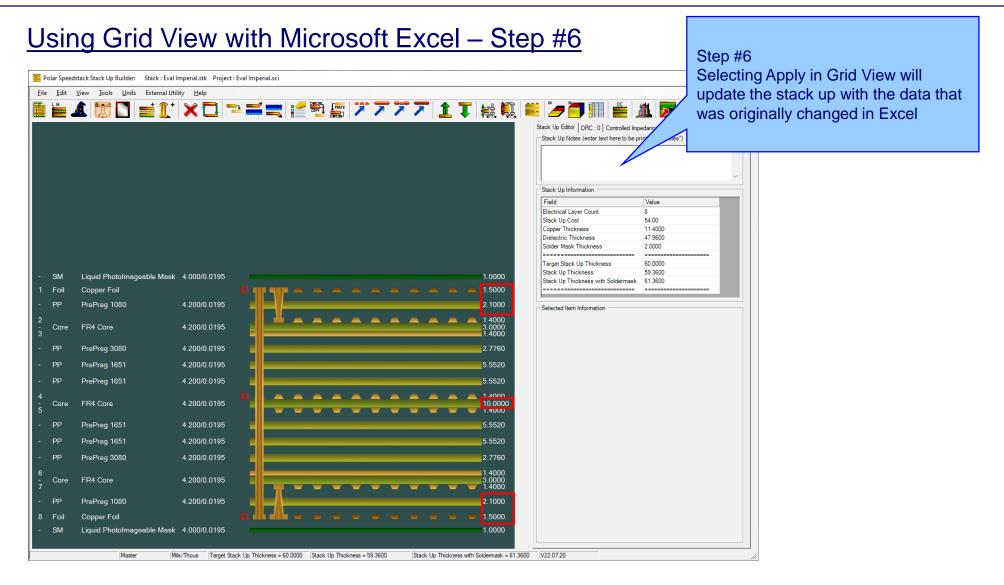
<u>Using Grid View with Microsoft Excel – Step #4</u>

Step #4 Once the Excel changes are complete select the range of cells representing the whole stack up data and select

) Copy 👻 Format Painter	B I ∐ - □ -	🖄 • 🔺 = = =	\equiv 🔄 🗮 🖽 Merge & Center 👻 🕻	<mark>₽</mark> • % • •	Conditional Format as Ne	Calculation	Check Cell	Ţ In:		, e ciear	Filter *	Select *
	rs Font	r <u>s</u>	Alignment	Number	G S	Styles			Cells		Editing	
* :	× √ ƒ _× Sta	k Up Collection Index										
А	В	С	D E	F		Н	1	J	К	L M	N	0
Up Collection	0 CSTSolderMas		lectrical Layer Material Layer Type I SM	D Layer Name	Liquid PhotoImageable Mask	Processed Thickness Diele	ctric Constant Los 4	o.0195				
	1 CSTFoil	Copper	1 Foil	Тор	Copper Foil	1.5	4	0.0195				
	2 CSTPrePreg	Dielectric	PP	100	PrePreg 1080	2.1	4.2	0.0195				
	3 CSTCore	UpperCopper	2	Inner 2		1.4		0.0150				
	3 CSTCore	Dielectric	Core		FR4 Core	3	4.2	0.0195				
	3 CSTCore	LowerCopper	3	Inner 3		1.4						
	4 CSTPrePreg	Dielectric	PP		PrePreg 3080	2.776	4.2	0.0195				
	5 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2	0.0195				
	6 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2	0.0195				
	7 CSTCore	UpperCopper	4	Inner 4		1.4						
	7 CSTCore	Dielectric	Core		FR4 Core	10	4.2	0.0195				
	7 CSTCore	LowerCopper	5	Inner 5		1.4						
	8 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2	0.0195				
	9 CSTPrePreg	Dielectric	PP		PrePreg 1651	5.552	4.2	0.0195				
	10 CSTPrePreg	Dielectric	PP		PrePreg 3080	2.776	4.2	0.0195				
	11 CSTCore	UpperCopper	6	Inner 6		1.4						
	11 CSTCore	Dielectric	Core		FR4 Core	3	4.2	0.0195				
	11 CSTCore	LowerCopper	7	Inner 7		1.4						
	12 CSTPrePreg	Dielectric	PP		PrePreg 1080	2.1	4.2	0.0195				
	13 CSTFoil	Copper	8 Foil	Bottom	Copper Foil	1.5						_
	14 CSTSolderMas	k Mask	SM		Liquid PhotoImageable Mask	1	4	0.0195				

Book1 - Exce

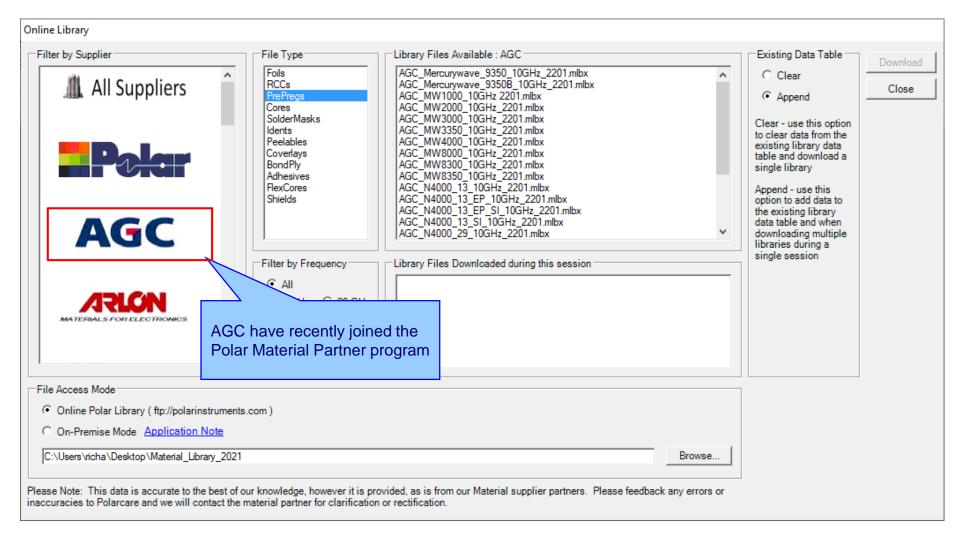
polarinstruments.com


62

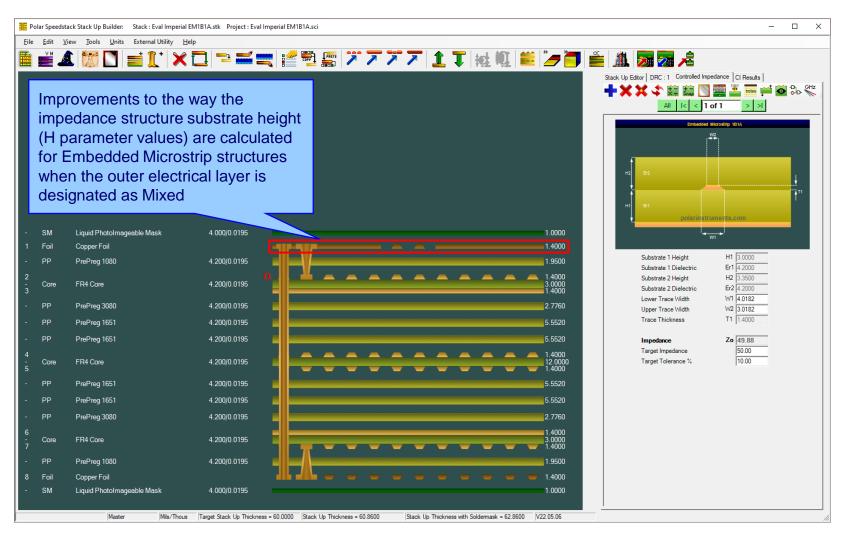
rid View									menu Paste from Clipboard option and Grid View will update with the				
ack Up llection lex	Material Class	Material Element	Electrical Layer	Material Layer Type ID	Layer Name		Description	\square	data from Excel. Notice how the da now matches Excel				
0	CSTSolderMask	Mask		SM			Liquid PhotoImageable Mask	-		1.0000	4.0000	0.0195	
1	CSTFoil	Copper	1	Foil	Тор		Copper Foil			1.5000			
2	CSTPrePreg	Dielectric		PP			PrePreg 1080			2.1000	4.2000	0.0195	
3	CSTCore	UpperCopper	2		Inner 2					1.4000			
3	CSTCore	Dielectric		Core			FR4 Core			3.0000	4.2000	0.0195	
3	CSTCore	LowerCopper	3		Inner 3					1.4000			
4	CSTPrePreg	Dielectric		PP			PrePreg 3080			2.7760	4.2000	0.0195	
5	CSTPrePreg	Dielectric		PP		Convito Cli	ipboard (for Excel)			5.5520	4.2000	0.0195	
6	CSTPrePreg	Dielectric		PP			Clipboard (from Excel)			5.5520	4.2000	0.0195	
7	CSTCore	UpperCopper	4		Inner 4	Paste from	Clipboard (Irom Excel)			1.4000			
7	CSTCore	Dielectric		Core			FR4 Core			10.0000	4.2000	0.0195	
7	CSTCore	LowerCopper	5		Inner 5					1.4000			
8	CSTPrePreg	Dielectric		PP			PrePreg 1651			5.5520	4.2000	0.0195	
9	CSTPrePreg	Dielectric		PP			PrePreg 1651			5.5520	4.2000	0.0195	
10	CSTPrePreg	Dielectric		PP			PrePreg 3080			2.7760	4.2000	0.0195	
11	CSTCore	UpperCopper	6		Inner 6					1.4000			
11	CSTCore	Dielectric		Core			FR4 Core			3.0000	4.2000	0.0195	
11	CSTCore	LowerCopper	7		Inner 7					1.4000			
12	CSTPrePreg	Dielectric		PP			PrePreg 1080			2.1000	4.2000	0.0195	
13	CSTFoil	Copper	8	Foil	Bottom		Copper Foil			1.5000			
14	CSTSolderMask	Mask		SM			Liquid Photolmageable Mask			1.0000	4.0000	0.0195	

Processed Thickness = Copper.FinishedThickness, Dielectric.IsolationDistance, SolderMask.MaskThickness, Coverlay.FinishedThickness

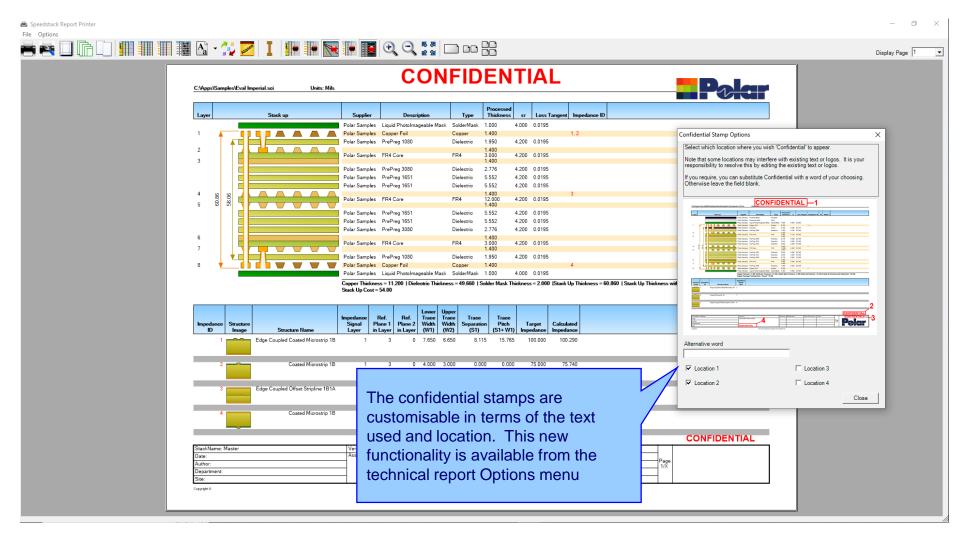
Other enhancements


- Stack Up Notes user interface improvements
- The Tools | Options | Structure Defaults | Separation Region Dielectric (REr) now supports double data types. Previously, it only supported integers

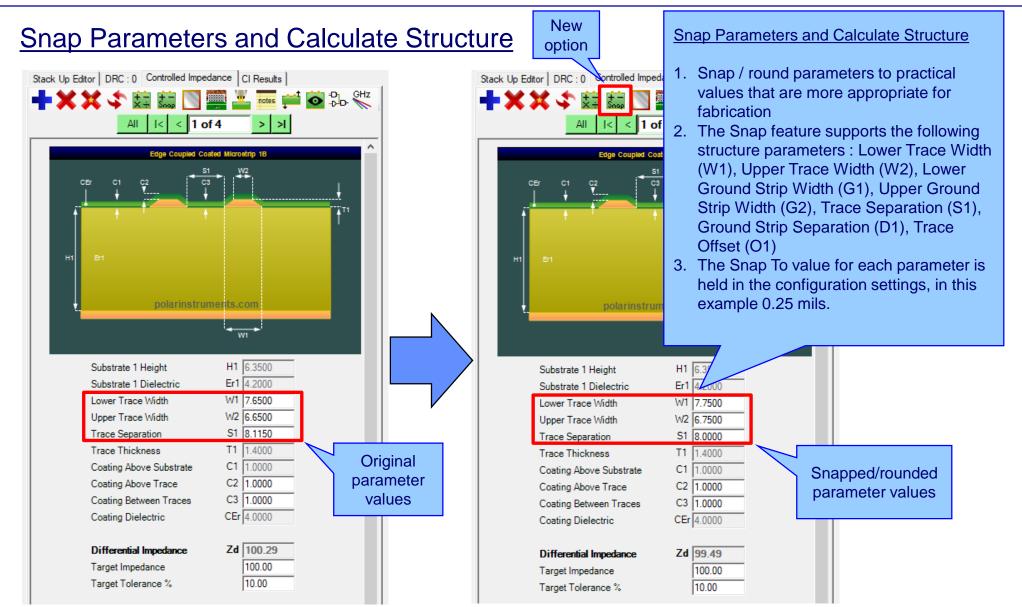
Speedstack v22.05.06 (May 2022)



Online Library enhancements


Embedded Microstrip structure enhancements

68

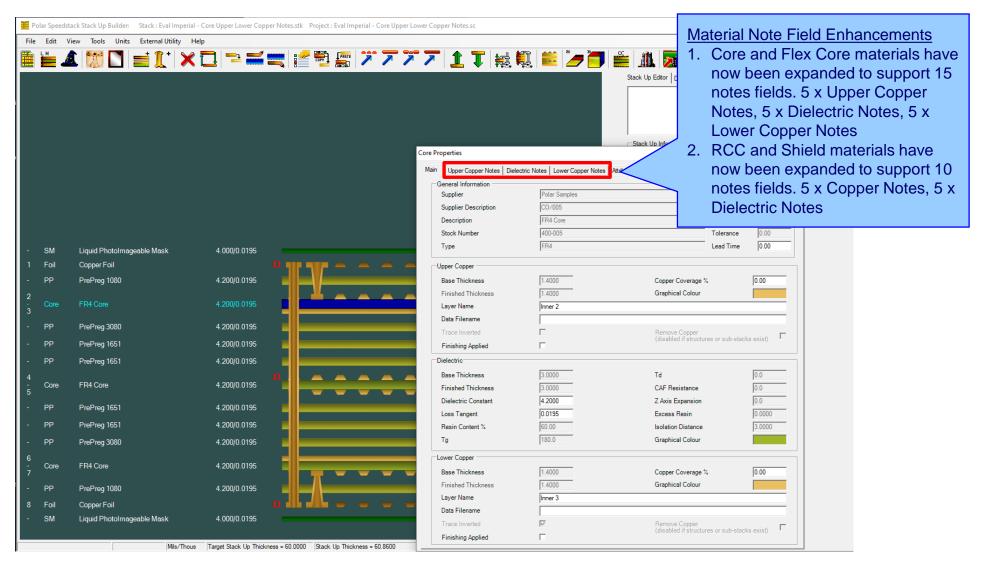

New Confidential Stamp options added to the technical report

Speedstack v22.01.01 (January 2022)

Snap Parameters and Calculate Structure

Configuration Options X									
External Utilities Rebuild and Calculate Structures General Structure Defaults Licensing File Locations Goal Seeking User CITS Test Colours Miscellaneous Hatch Defaults									
Default Snap To	Board Thickness 60.0000								
Lower Trace Width (W1) 10.0000 0.2500 Upper Trace Width (W2) 9.0000 0.2500 Lower Ground Strip Width (G1) 100.0000 0.2500	Plus % 10 Minus % 10								
Upper Ground Strip Width (G2) 99.0000 0.2500	illing								
Trace Separation (S1) 10.0000 0.2500 Ground Strip Separation (D1) 10.0000 0.2500 Trace Offset (O1) 0.0000 0.2500	Minimum Hole Size								
Separation Region Dielectric (REr) 4									
	The Snap To value for each parameter is held in the configuration settings, accessible from the Tools Options Structure Defaults tab.								
	Although all Snap To values shown here are set to 0.25 mils, each parameter can support a different value								

Material Library Enhancements


		}	🏙 🕻 📴 🛄 🏹	Ж 📔 🏨					
ils	Prepregs RCCs	Cores Solder Masks	s Ident Inks Peelable Masks Coverlays Bond Ply A	dhesive Flexible Cores Shields					
	Supplier	Supplier Description	Description	Stock Number	Dielectric Base Thickness	Dielectric Finished Thickness	Tolerance	Dielectric Constant	Loss Tangent
	PolarSamples	PP/001	PrePreg 1080	300-001	3	3		4.2	0.0195
_	Polar Samples	PP/002	PrePreg 3080	300-002	3	3		4.2	0.0195
_	Polar Samples	PP/003	PrePreg 3113	300-003	4	4		4.2	0.0195
_	Polar Samples	PP/004	PrePreg 1651	300-004	6	6		4.2	0.0195
_	PolarSamples	PP/005	PrePreg 7628	300-005	7.9	7.9		4.2	0.0195
	PolarSamples	PP/006	PrePreg 106	300-005	2	2	10	4.2	0.0195
							material	s with a die	
							material toleranc Previous would pr	s with a die e of 0%. s versions o	y now support electric thickne of Speedstack user to enter a 0%

Speedstack v21.11.01 (November 2021)

Material Note Field Enhancements – improvements to stack up documentation

<u>Material Note Field Enhancements – improvements to stack up documentation</u>

Core Properties		
Main Upper Copper N Notes Note 1	Notes Dielectric Notes Lower Copper Notes Attributes Roughness: Very-low profile (VLP) Apply Close	The new Upper and Lower Copper Notes allow the user to specify important information about the
Note 2		copper surfaces for a Core and Flex Core material.
Note 3 Note 4		For instance, conner roughpose and
Note 5		For instance, copper roughness and plating fabrication information can be
		specified

76

<u>Material Note Field Enhancements – improvements to stack up documentation</u>

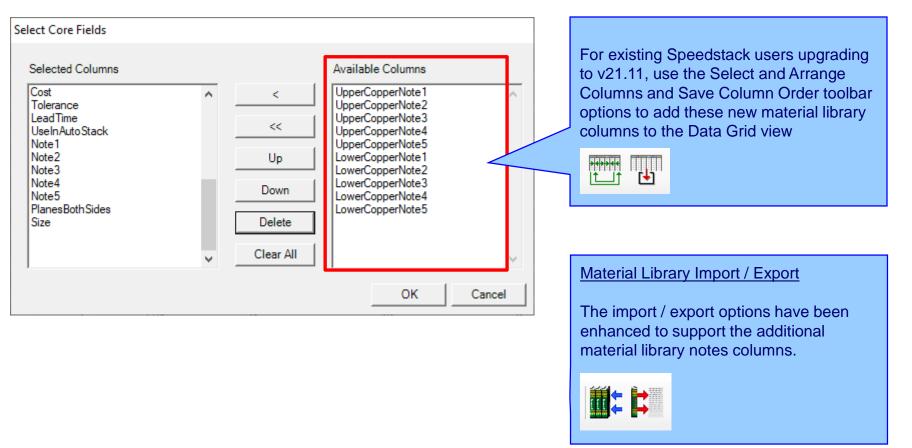
Main Upper Copper	Notes Dielectric Notes Lower Copper Notes Attributes Attributes	Dielectric Notes are useful for specifying IPC-4101 slash sheet categories, glass weave information (spread glass) and other important
Note 2 Note 3 Note 4 Note 5		 (spread glass) and other important information regarding the dielectric region of the core. The existing five Notes fields from previous versions of Speedstack will
		be allocated as Dielectric Notes.

Material Note Field Enhancements – improvements to stack up documentation

			1.4000	
			1.9500	
			1.4000 3.0000 1.4000	
			2.7760	
			5.5520	
			5.5520	
			1.4000 12.000 1.4000	0
			5.5520	
			5.5520	
			2.7760	
-	-	-	1.4000 3.0000 1.4000	
			1.9500	
-			— 1.4000	
			1.0000	

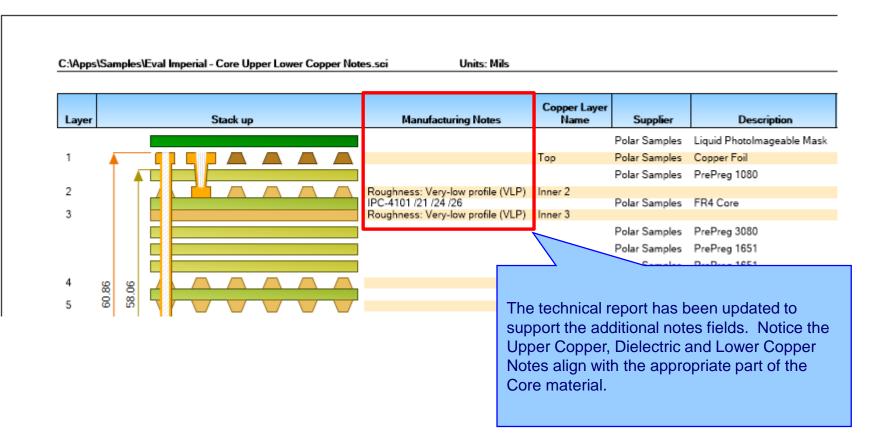
ïeld	Value
pper Copper Notes	
ote 1	Roughness: Very-low profile
ote 2	
ote 3	
ote 4	
ote 5	
ielectric Notes	
ote 1	IPC-4101 /21 /24 /26
ote 2	
ote 3	
ote 4	
ote 5	
ower Copper Notes	
ote 1	Roughness: Very-low profile
ote 2	
ote 3	
ote 4	
ote 5	
ost	5
ead Time	0
ttributes	

When selecting a core / flex core material the Upper Copper, Dielectric and Lower Copper Notes can be confirmed here.



<u>Material Note Field Enhancements – library enhancements</u>

eview/Edit Cores							
Supplier	Polar Samples	Upper Copper No	tes	Dielectric Notes		Lower Copper Notes	
Supplier Description	CO/005	Note 1	Roughness: Very-low profile (VLP)	Note 1	IPC-4101 /21 /24 /26	Note 1	Roughness: Very-low profile (VLP)
Description	FR4 Core						
Stock Number	400-005						
Туре	FR4	Note 2		Note 2		Note 2	
Base Thickness	3.0000						
Finished Thickness	3.0000	_					
Dielectric Constant	4.2	Note 3		Note 3		Note 3	
oss Tangent	0.0195						
lesin Content	60						
g	180	Note 4		Note 4		Note 4	
đ	0						
AF Resistance	0						
Axis Expansion	0	Note 5		Note 5		Note 5	
olerance +/-%	10	INDIE 5		Note 5		Note 5	
	1.4000						
pper Cu Thickness ower Cu Thickness	1.4000		1]]
	1.4000						
ost	5						
ad Time	0						
ize	•						ck material library h
se in Auto Stack	$\overline{\checkmark}$					been enhance	ed to support the ext
anes Both Sides						notes fields.	
aser Drillable	•						
Add Delete			<< <	5 of 27 > >>		Notoo oddod t	o the materials in th
						library will auto	
						transferred to	the stack up.

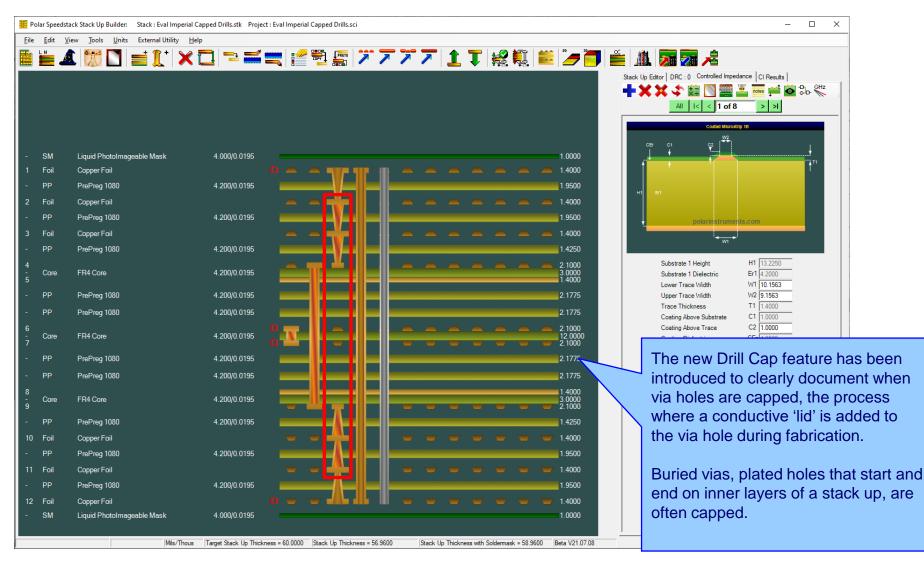


Material Note Field Enhancements – library enhancements

Material Note Field Enhancements – technical report enhancements

Import / Export enhancements

The following Import / Export options have been updated to support the additional material notes properties introduced with Speedstack v21.11.01:

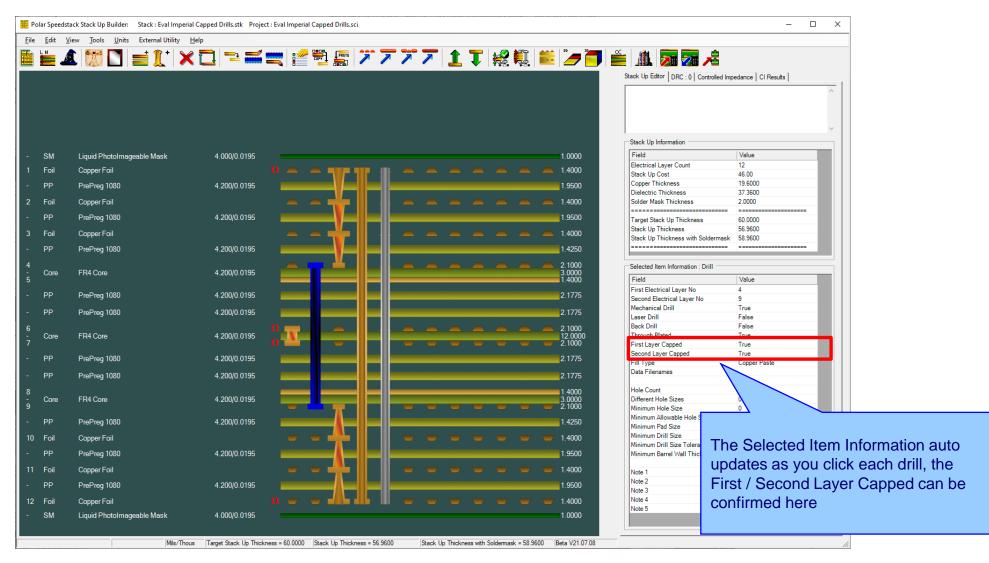

- XML STKX v23.00 and SSX v13.00 import / export options
- CSV export option

Speedstack v21.07.08 (July 2021)

New Drill Cap feature

Drill Cap option – mechanical through plated drills

Drill Properties			\times	
Main Notes Electrical Layers Stack Up Column First Electrical Layer Second Ele No (Start Layer) Layer No (2		t-Cut Back Drill Must-Not-Cut Layer No		Mechanical For mechanical drills it is possible to have four states: 1.Neither first or second layer capped (default when adding a drill)
Drill Information • Mechanical • Mechanical • Laser • Laser • Back Drill • Through Plated • First Layer Capped • Second Layer Capped	Hole Information Hole Count 0 Different Hole Sizes 0 Minimum Hole Size 0.0000 Minimum Pad Size 0.0000	Minimum Drill Size 0.0000 Minimum Drill Size Tolerance (Abs) 0.0000 Minimum Barrel Wall Thickness 0.0000		2.First layer capped 3.Second layer capped 4.Both layers capped
Back Drill Information Minimum Distance From Must-Cut Layer 0.0000 Maximum Distance From Must-Cut Layer 0.0000 Maximum Distance From Must-Cut Layer Must-Cut Layer 0.0000 Primary Drill Size 0.0000		Apply Cancel		



Drill Cap option – laser drills

Drill Properties		×	<	
Main Notes Electrical Layers Stack Up Column First Electrical Layer Second E No (Start Layer) Layer No 3 3 4	Clectrical Back Drill Must (End Layer) Layer No	-Cut Back Drill Must-Not-Cut Layer No		Laser For laser drills it is possible to have two states as the Second Layer Capped checkbox is disabled: 1.Not capped (default when adding a
Drill Information ○ Mechanical Fill Type ● Laser Copper Paste ○ Back Drill ✓ Through Plated ☑ Through Plated Data Filenames	Hole Information Hole Count 0 Different Hole Sizes 0 Minimum Hole Size 0.0000 Minimum Pad Size 0.0000	Minimum Drill Size 0.0000 Minimum Drill Size Tolerance (Abs) 0.0000 Minimum Barrel Wall Thickness 0.0000		drill) 2.First layer capped
Back Drill Information Minimum Distance From Must-Cut Layer 0.0000 Maximum Distance From Must-Cut Layer 0.0000 Maximum Distance From Must-Cut Layer 0.0000 Maximum Distance From Must-Cut Layer 0.0000 Primary Drill Size 0.0000		Apply Cancel		

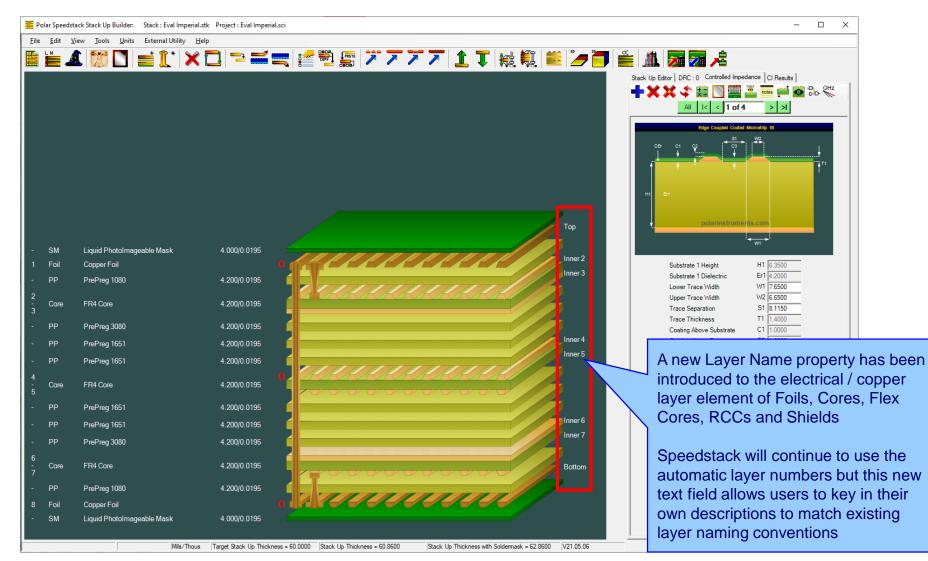
New Drill Cap feature

<u>New Drill Cap feature – technical report enhancements</u>

C.wpps/sample:	s\Eval Imperial Capped		nits: Mils									
		a Dhilis.sci U	nits: Miis									
Layer	Stack u	пр	Copper Layer Name	Supplier	Descript	tion	Турө	Processed Thickness	ъr	Loss Tangent	Impedance ID	
				Polar Samples	Liquid Photolmage	əablə Mask 🖇	SolderMask	1.000	4.000	0.0195		
1			Тор	Polar Samples	Copper Foil	(Copper	1.400			1, 2	
				Polar Samples	PrePreg 1080	[Dielectric	1.950	4.200	0.0195		
2		▋₄⊾₄⊾	Inner 2	Polar Samples	Copper Foil	(Copper	1.400				
				Polar Samples	PrePreg 1080	[Dielectric	1.950	4.200	0.0195		
3			Inner 3	Polar Samples		(Copper	1.400				
				Polar Samples	PrePreg 1080	(Dielectric	1.425	4.200	0.0195		
4			Inner 4	Polar Samples	EB4 Core		FR4	2.100 3.000	4 200	0.0195		
5			Inner 5	l olar oampios	114 0010			1.400	4.200	0.0100		
				Polar Samples	PrePreg 1080	[Dielectric	2.178	4.200	0.0195		
				Polar Samples	PrePreg 1080	[Dielectric	2.178	4.200	0.0195		
16 9 16 9			Inner 6		5010			2.100			3, 4	
2 д 56.96 54.16			Inner 7	Polar Samples	FR4 Core	ł	FR4	12.000 2.100	4.200	0.0195	5, 6	
				Polar Samples	PrePreg 1080	l	Dielectric	2.178	4.200	0.0195	- / -	
				Polar Samples		[Dielectric	2.178	4.200	0.0195		
8			Inner 8					1.400				
9	│└ _{╼┲} ╶╌ <mark>║╎┠</mark> ╌╍		Inner 9	Polar Samples	FR4 Core	F	FR4	3.000 2.100	4.200	0.0195		
5			inner o	Polar Samples	PrePreg 1080	1	Dielectric	1.425	4 200	0.0195		
10			Inner 10	Polar Samples	-		Copper	1.400	1.200	0.0100		
				Polar Samples	••		Dielectric	1.950	4.200	0.0195		
11			Inner 11	Polar Samples	2		Copper	1.400				
				Polar Samples			Dielectric	1.950	4.200	0.0195		
12 🔶			Bottom	Polar Samples	-		Copper	1.400			7, 8	
							SolderMask		4 000	0.0195		

88

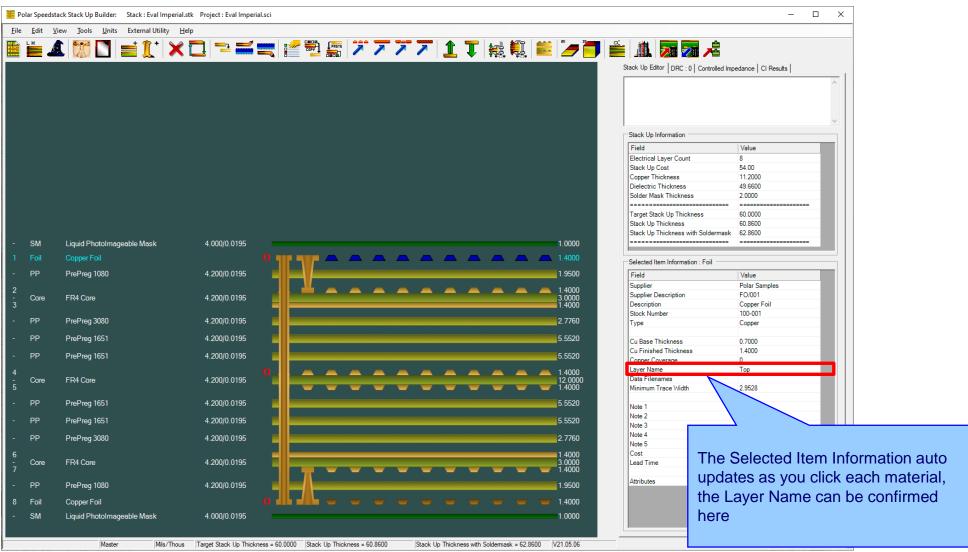
Import / Export enhancements


The following Import / Export options have been updated to support the drill cap properties introduced with Speedstack v21.07.08:

- XML STKX v22.00 and SSX v12.00 import / export options
- CSV export option

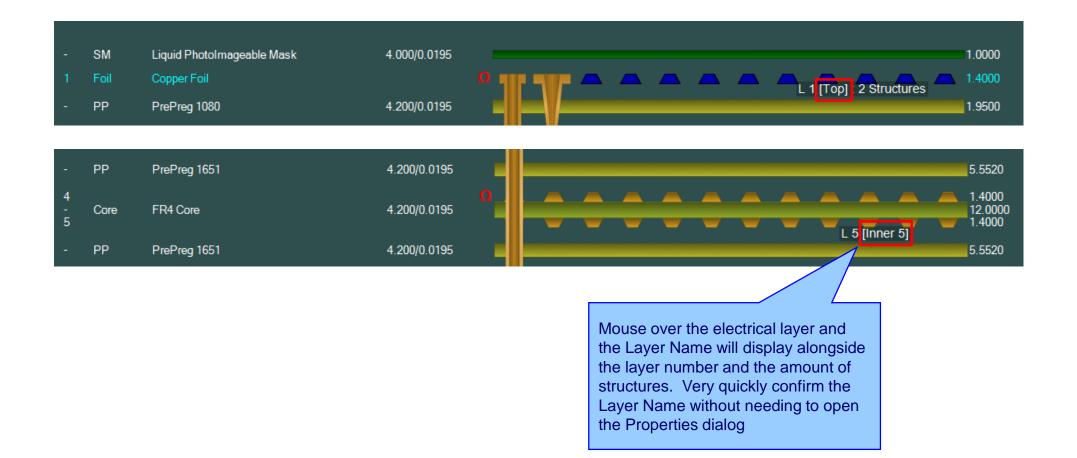
Speedstack v21.05.06 (May 2021)

Foil P	roperties					
Mai	n Notes Attributes					l Arrhy I
Г	General Information					Apply
	Supplier	Polar Samples				
	Supplier Description	FO/001				Foil Properties
	Description	Copper Foil		Cost	1.00	The new Layer Name property exists
	Stock Number	100-001				on all materials with an electrical /
	Туре	Copper		Lead Time	0.00	copper layer. The user can key in any
	Copper					alphanumeric name
	Base Thickness	0.7000	Copper Coverage %		0.00	
	Finished Thickness	1.4000	Graphical Colour			
	Layer Name	Тор				
	Data Filename					
	Trace Inverted		Remove Copper (disabled if structur	es or sub-stack	(e evist)	
	Finishing Applied		(มีสมคริง 11 อิน มิอินม			

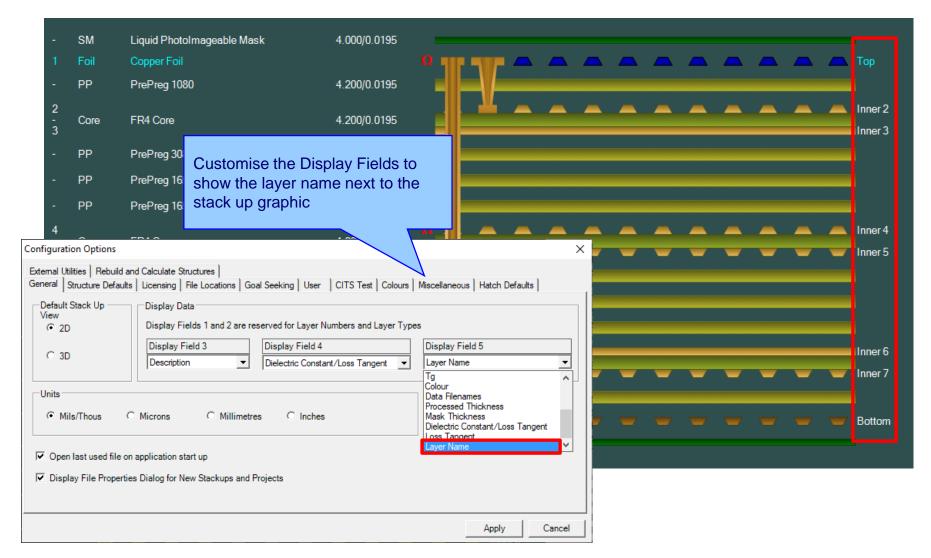


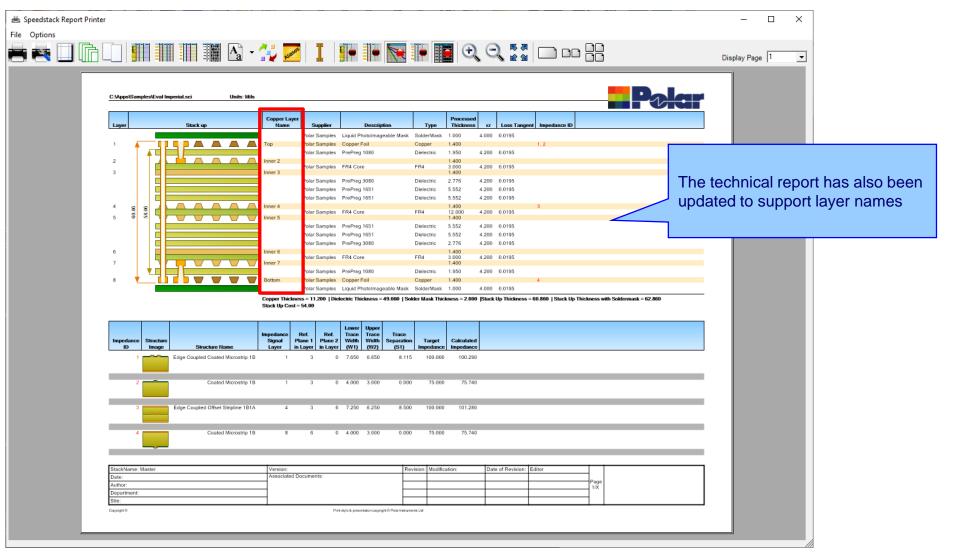
Core Properties					
				Apply	1
General Information Supplier	Polar Samples		_		
			Exchange Copper 🛛 🗖	Close	
Supplier Description	CO/005				
Description	FR4 Core		Cost 5.00		Core Properties
Stock Number	400-005		Tolerance 0.00		
Туре	FR4		Lead Time 0.00		
Upper Copper					For core materials, a new Layer Name
Base Thickness	1.4000	Copper Coverage %	6 0.00		property has been added for both
Finished Thickness	1.4000	Graphical Colour	. 0.00		upper and lower electrical / copper
Layer Name	Inner 2	draphical colour			layers
Data Filename					
Trace Inverted	Γ	Remove Copper	_		
Finishing Applied		(disabled if structur	res or sub-stacks exist)		
Dielectric					
Base Thickness	3.0000	Td	0.0		
Finished Thickness	3.0000	CAF Resistance	0.0		
Dielectric Constant	4.2000	Z Axis Expansion	0.0		
Loss Tangent	0.0195	Excess Resin	0.0000		
Resin Content %	60.00	Isolation Distance	3.0000		
Tg	180.0	Graphical Colour			
Lower Copper					
Base Thickness	1.4000	Copper Coverage %	6 0.00		
Finished Thickness	1.4000	Graphical Colour			
Layer Name	Inner 3				
Data Filename					
Trace Inverted	$\overline{\vee}$	Remove Copper	res or sub-stacks exist)		
Finishing Applied		(disabled if structur	es or sub-stacks exist)		

Copyright © Polar Instruments 2024



New Layer Name property for electrical / copper layers


Copyright © Polar Instruments 2024



New Layer Name property for electrical / copper layers

<u>New Layer Name property for electrical / copper layers</u>

Copper Finishing classes increased

Copper Coverage Base	d Prepreg Corrections		×
Percentage Copper To Be	Embedded in Prepreg		
Set by Layer type			
Signal Layer	% 7	75	
Mixed Layer	% [1	5	
Plane Layer	% 5	;	
C Proportional to Covera	ge		
Copper Finishing			
Enter values of thickness the one added to the base			
the one added to the base	thickness of copper lay	ers when plating	
Class Name	Value	ers when plating Selectio	
the one added to the base Class Name Class 1	Value	ers when plating Selectio	
the one added to the base Class Name Class 1 Class 2	Value 0.7000 0.7000	ers when plating Selectio	
the one added to the base Class Name Class 1 Class 2 Class 3	Value 0.7000 0.7000 0.7000	Selection C C	
the one added to the base Class Name Class 1 Class 2 Class 3 Class 4	Value 0.7000 0.7000 0.7000	Selection C C	

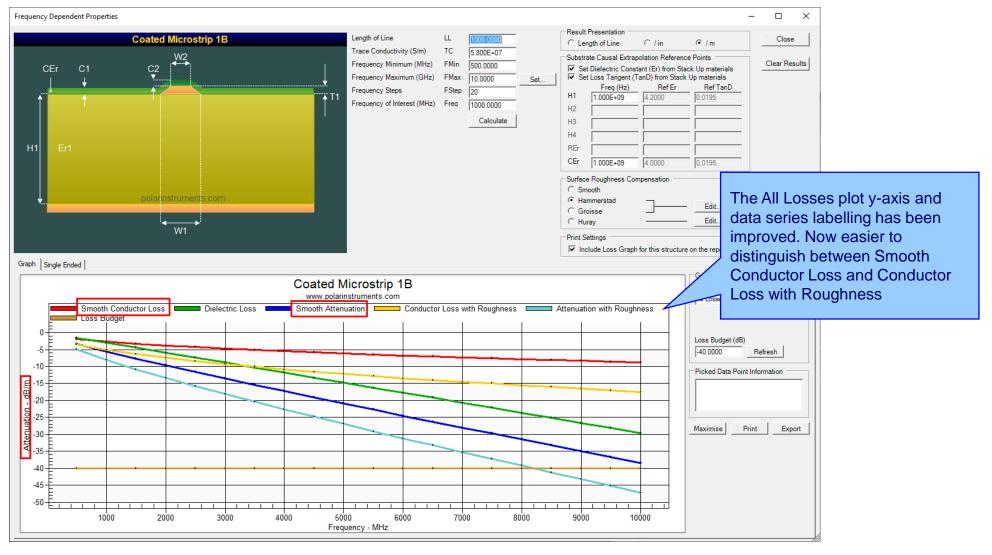
Speedstack v21.04 and earlier supported 4 classes

Perc	entage Copper To Be Embe	edded in Prepreg		
• •	Set by Layer type			
	Signal Layer	% 75		Llear colectable plating
	Mixed Layer	% 15		User selectable plating thicknesses under Finishing
	Plane Layer	% 5		Options (Copper Coverage
		,		Simple % methods)
Ē	Proportional to Coverage		l	
.op	per Finishing			
Ente	r values of thickness accord			
Inte	-			
Ente he c	r values of thickness accord		vhen platir	ng.
Ente he c	r values of thickness accord one added to the base thickn	ness of copper layers v	vhen platir	ng.
Ente he c ID	r values of thickness accorr one added to the base thickn Class Name	Class Value	when platin	ng.
Ente he c ID 1 2	r values of thickness accorr one added to the base thickn Class Name Class 1	Class Value 0.7000	when platin	ng.
Ente he c ID 1 2	r values of thickness accorr one added to the base thickn Class Name Class 1 Rich	Class Value 0.7000 0.8000	when platin	ng.
ID 1 2 3 4	r values of thickness accorr one added to the base thickn Class Name Class 1 Rich Class 3	Class Value 0.7000 0.8000 0.7000	when platin	ng.
ID 1 2 3 4	r values of thickness accorr one added to the base thickness Class Name Class 1 Rich Class 3 Class 4	Class Value 0.7000 0.8000 0.7000 0.7000	when platin	ng.
Ente he c ID 1 2 3 4 5	r values of thickness accorr one added to the base thickness Class Name Class 1 Rich Class 3 Class 4	Class Value 0.7000 0.8000 0.7000 0.7000	when platin	ng.
ID 1 2 3 4 5	r values of thickness accorr one added to the base thickness Class 1 Rich Class 3 Class 4 Class 5 ess Resin Test	Class Value 0.7000 0.8000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000	when platin	ng.
ID 1 2 3 4 5	r values of thickness accorr one added to the base thickness Class Name Class 1 Rich Class 3 Class 4 Class 5	Class Value 0.7000 0.8000 0.7000 0.7000	when platin	ng.

Speedstack v21.05 now supports 20 classes

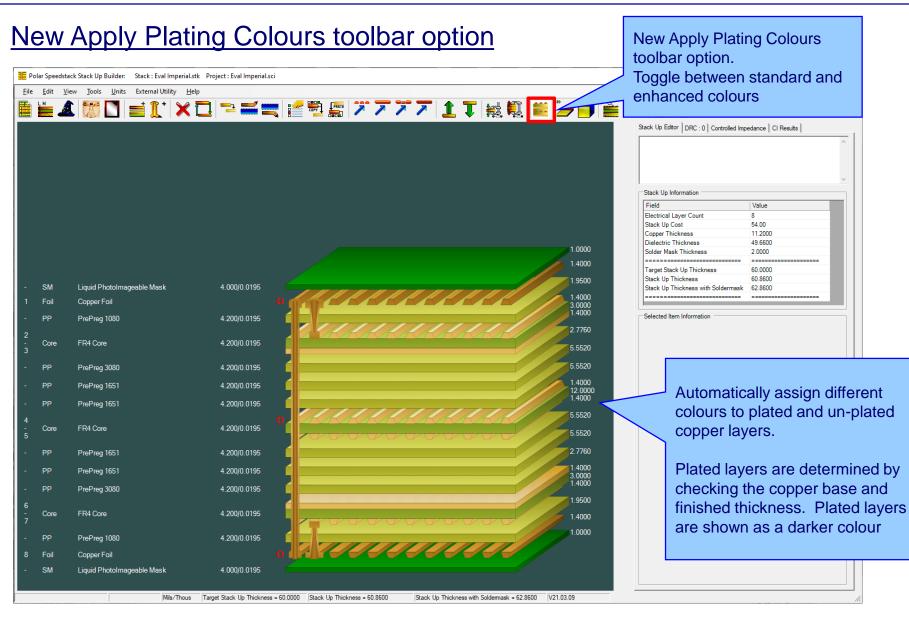
Import / Export enhancements

The following Import / Export options have been updated to support the layer name property introduced with Speedstack v21.05.06:

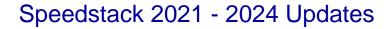

- XML STKX v21.00 and SSX v11.00 import / export options
- CSV export option
- Gerber / DXF export option

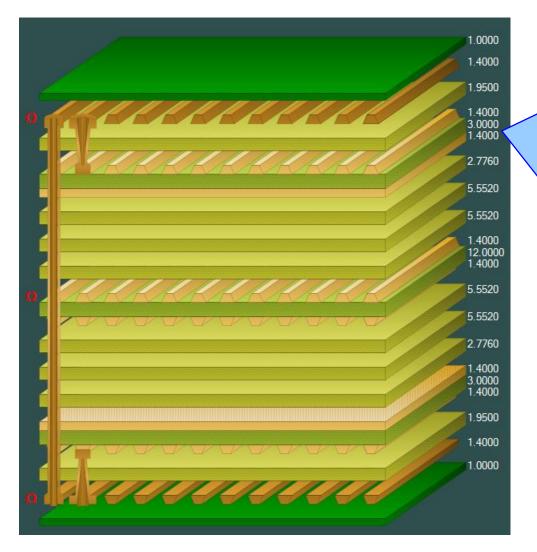
Speedstack v21.04.00 (April 2021)

All Losses plot - clearer labelling


Other enhancements

- The controlled impedance and insertion loss Calculation Engine updated to the latest edition
- Frequency Dependent Calculations graphing library enhancements


Speedstack v21.03.09 (March 2021)


polarinstruments.com

Copyright © Polar Instruments 2024

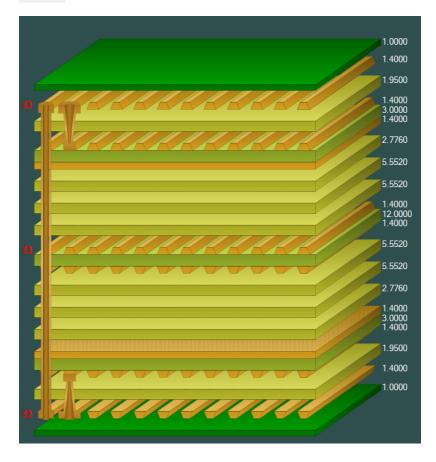
New Apply Plating Colours toolbar option

Plated Copper Layers

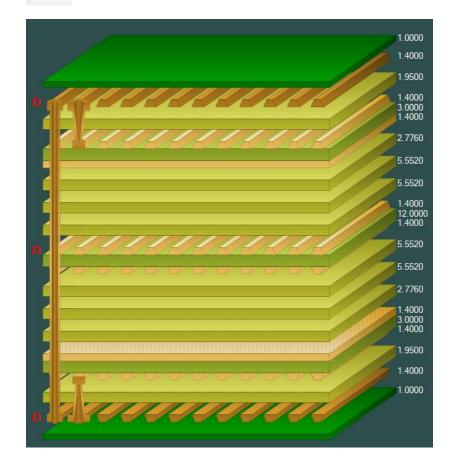
During PCB fabrication drill holes commonly have copper applied to the barrel wall by an electroplating process. This provides an interconnect between copper layers in the stack up.

This electroplating process often results in additional copper also being applied to the exposed copper layers where the mechanical drill starts / ends.

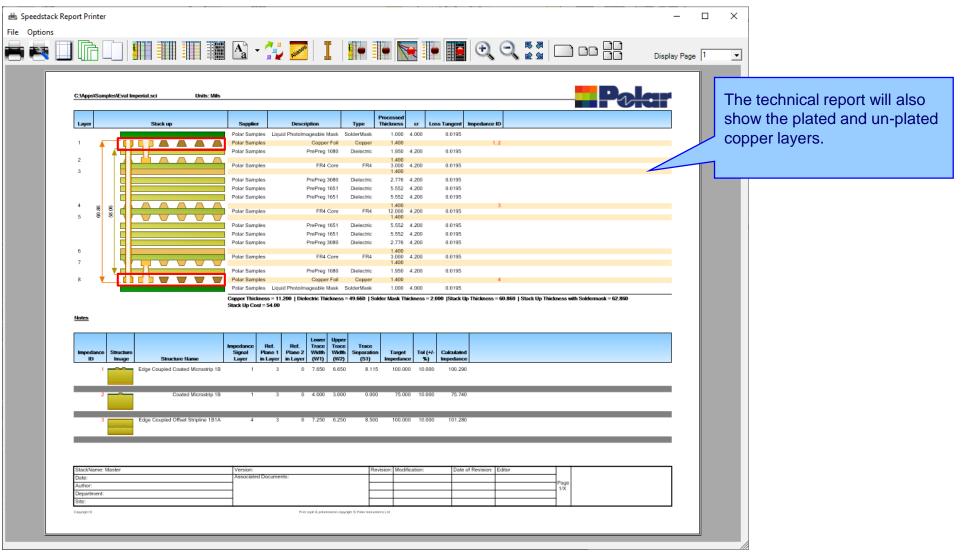
It is important to account for this additional plated copper thickness when calculating the overall stack up thickness and controlled impedance / insertion loss structures.


Speedstack has always allowed this additional plating thickness to be applied to the relevant copper layers. With v21.03 this has been enhanced further with automatic colour assignments to the plated and unplated layers

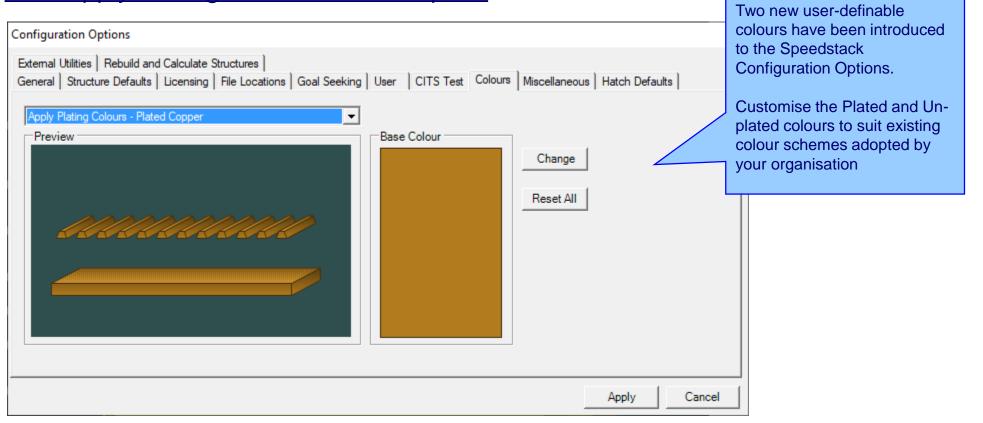
New Apply Plating Colours toolbar option



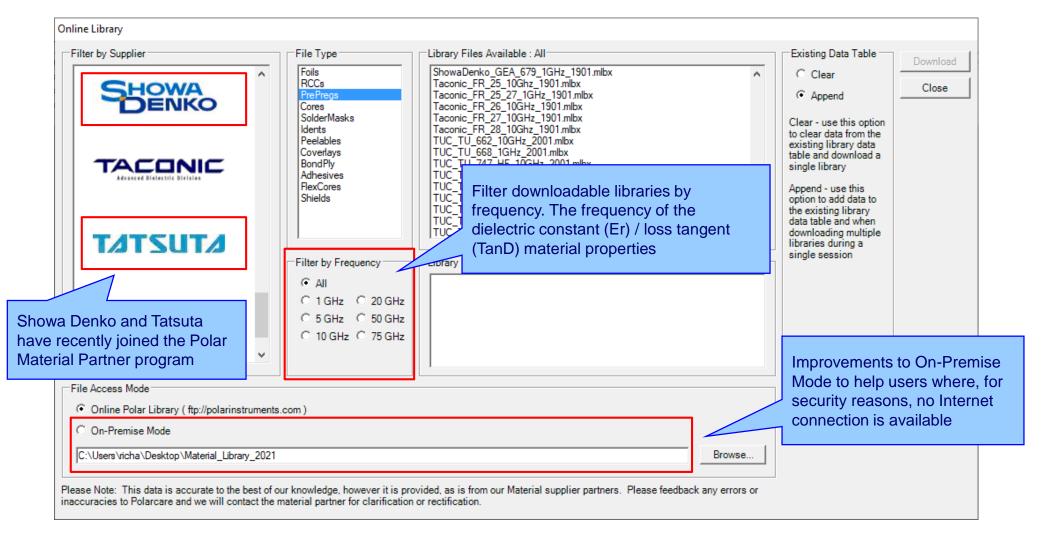
Standard Colours



Apply Plating Colours

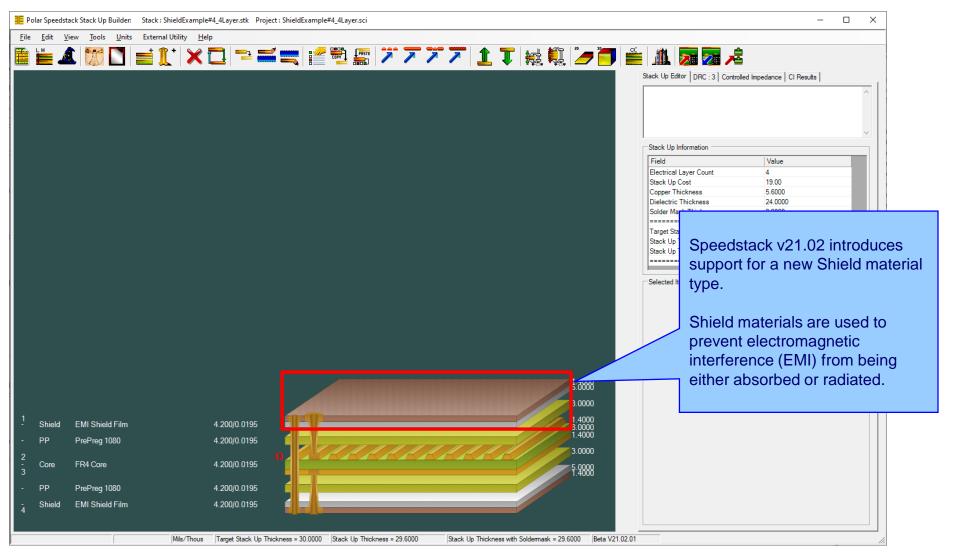


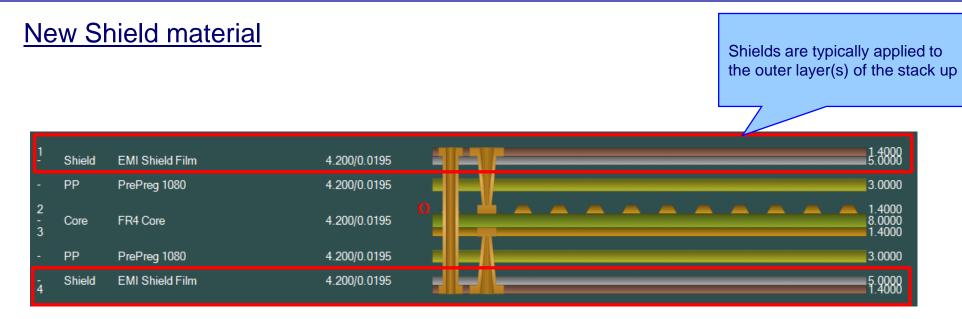
New Apply Plating Colours toolbar option



New Apply Plating Colours toolbar option

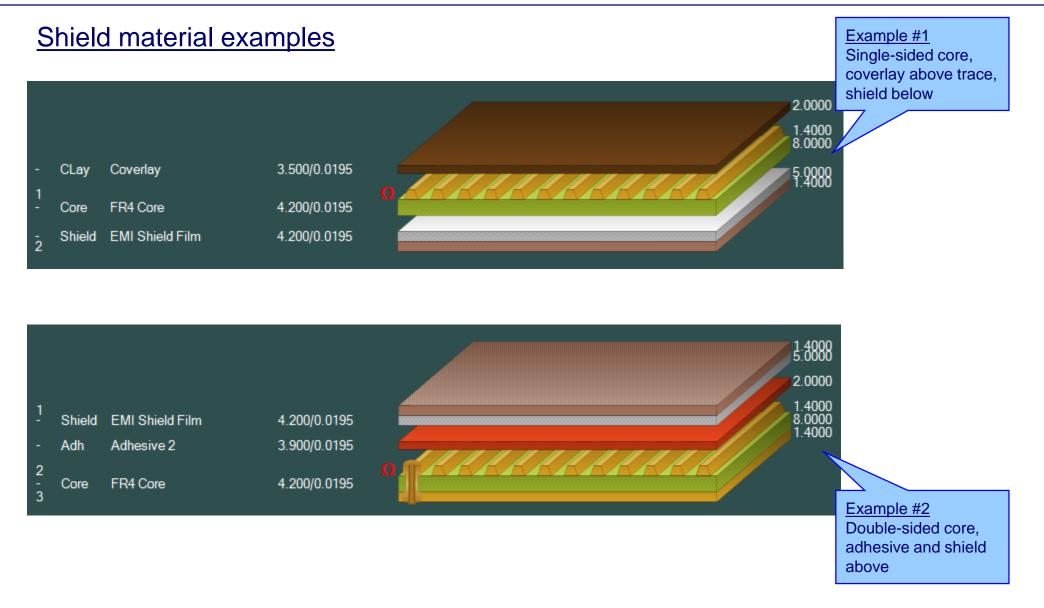
Online Library enhancements

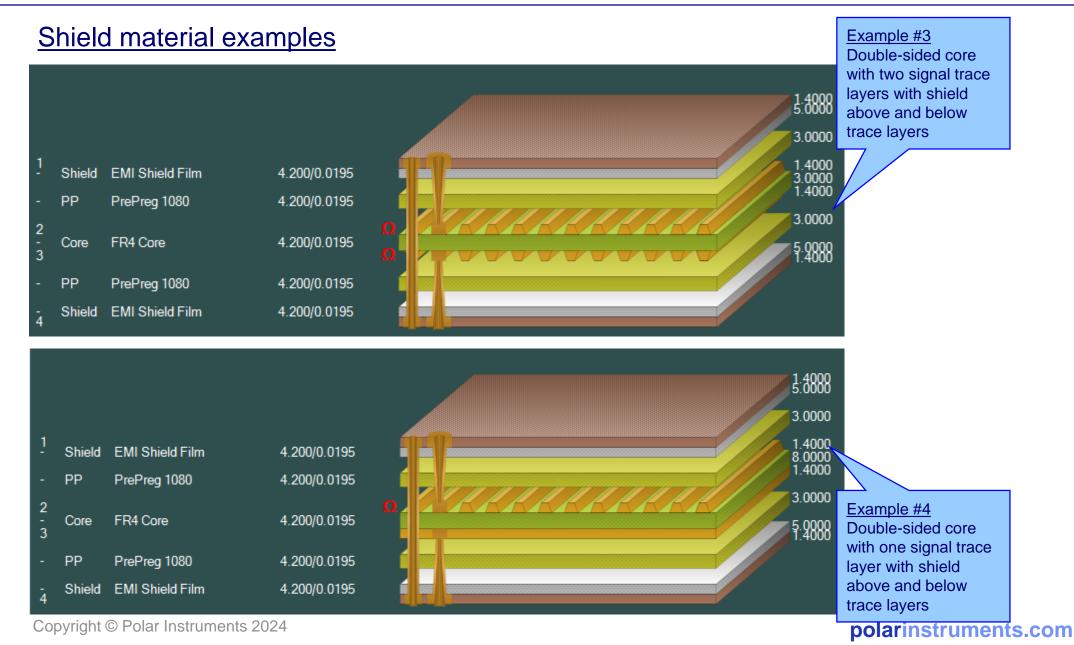



Speedstack v21.02.01 (February 2021)



New Shield material

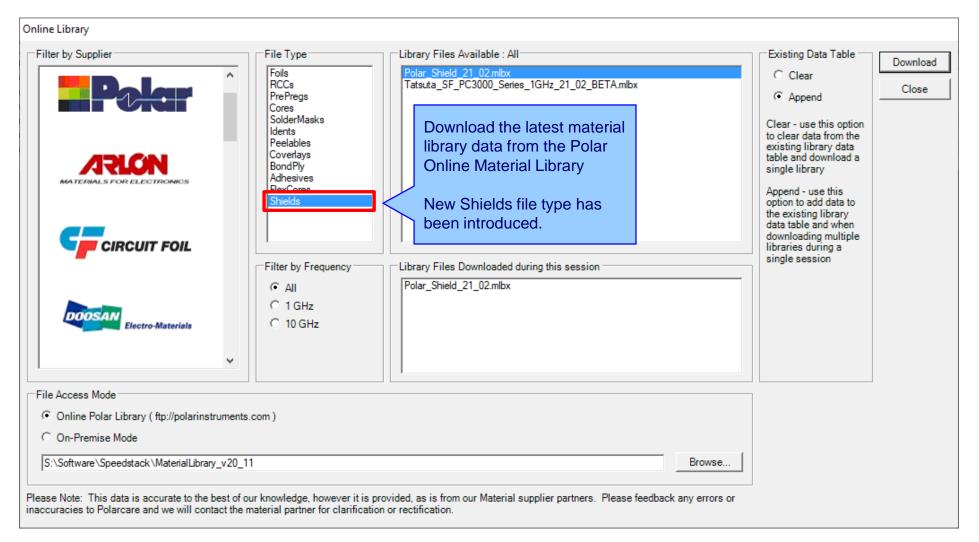




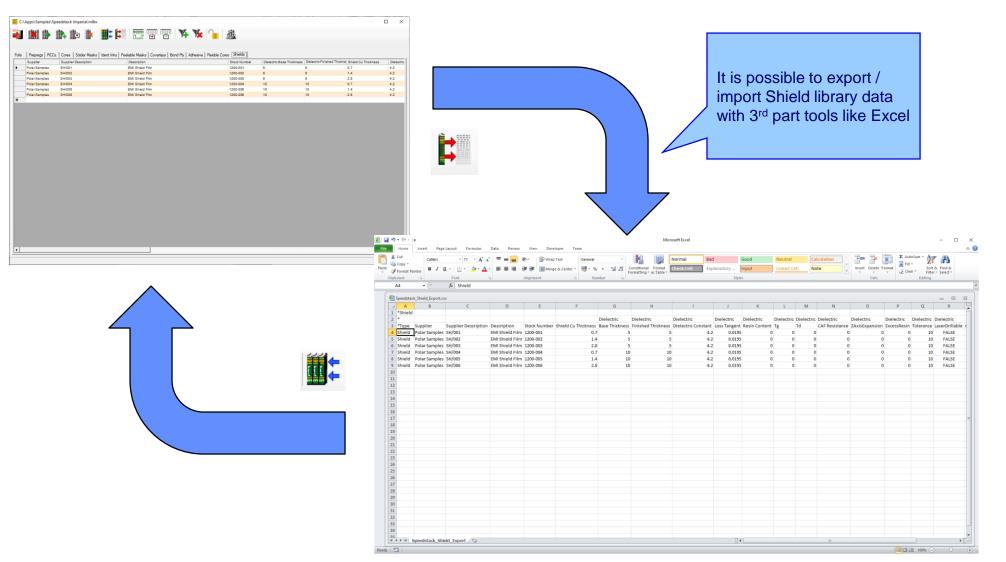
Speedstack 2021 - 2024 Updates

Speedstack 2021 - 2024 Updates

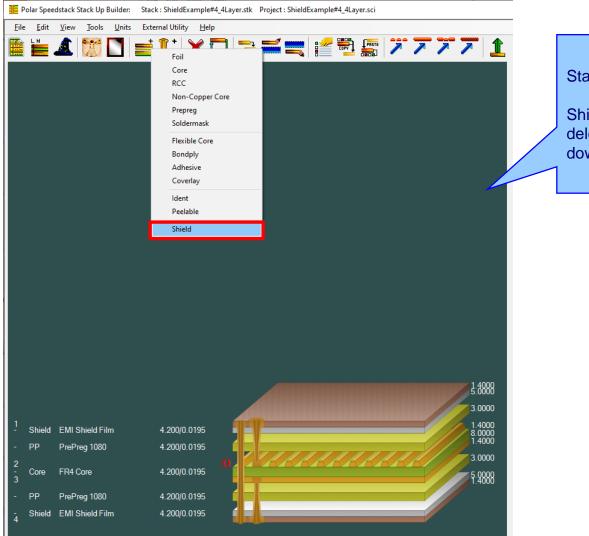
Material library enhancements


		eedstack Imperial.mlbx	· · · · · · · · · · · · · · · · · · ·			elds tab contai aterial informa		
		🔥 比 🎼 📕	 	• 🕒 🏨				
ls	Prepregs RCCs	Cores Solder Masks Ident	Inks Peelable Masks Coverlays Bond Ply Adhesi					
_	Supplier	Supplier Description	Description	Stock Number		Dielectric Finished Thickne		Diele
	PolarSamples	SH/001	EMI Shield Film	1200-001	5		0.7	4.2
	PolarSamples	SH/002	EMI Shield Film	1200-002	5		1.4	4.2
	Polar Samples	SH/003	EMI Shield Film	1200-003	5		2.8	4.2
	Polar Samples	SH/004 SH/005	EMI Shield Film EMI Shield Film	1200-004 1200-005	10		0.7	4.2
_	PolarSamples PolarSamples	SH/005	EMI Shield Film	1200-005	10		1.4 2.8	4.2
	-olar samples	31/000	Ewi Shield Film	1200-000	10	10	2.0	4.2

Review/Edit Shield				Material library Edit Sł dialog
Supplier	Polar Samples	Size	•	
Supplier Description	SH/001	Note 1		
Description	EMI Shield Film	INOLE I		
StockNumber	1200-001			
Туре	Shield			
		Note 2		
Base Thickness	5.0000			
Finished Thickness	5.0000			
Dielectric Constant	4.2	Note 3		
Loss Tangent	0.0195			
Resin Content	0			
Tg	0			
Td	0	Note 4		
CAF Resistance	0			
Z Axis Expansion	0			
Excess Resin	0.0000	Note 5		
Tolerance +/-%	10			
Shield Copper Thickness	0.7000			
Cost	0			
Lead Time	0			
Laser Drillable				



Online Library enhanced to support Shield materials

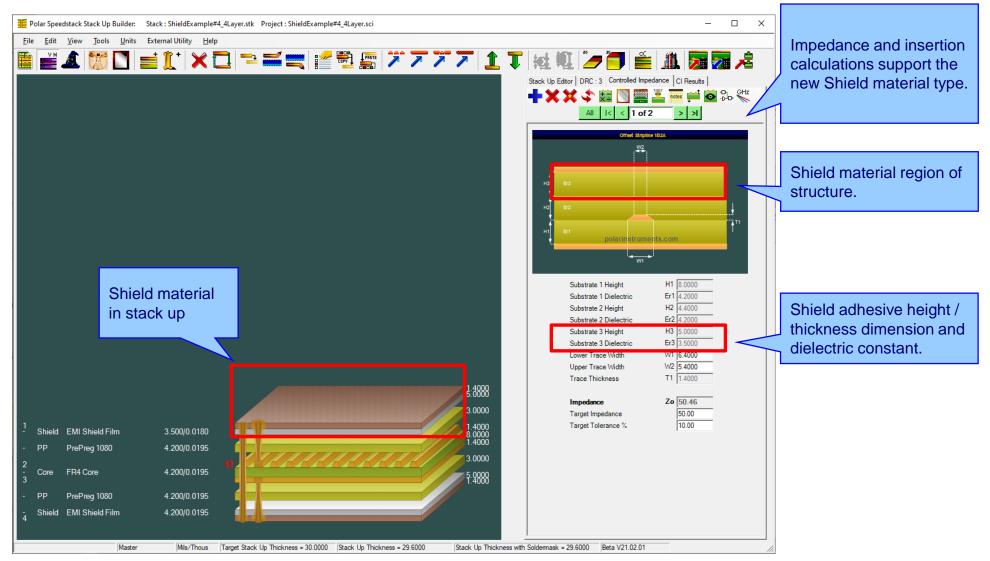


Export / Import Shield library to Excel

Stack up editor enhancements

Stack Up editor enhancements:

Shield material options to add, delete, swap, move up, move down, symmetry and set properties

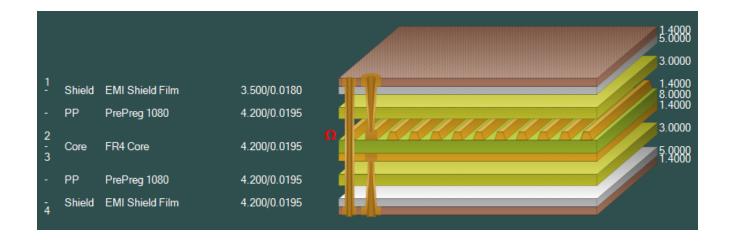

120

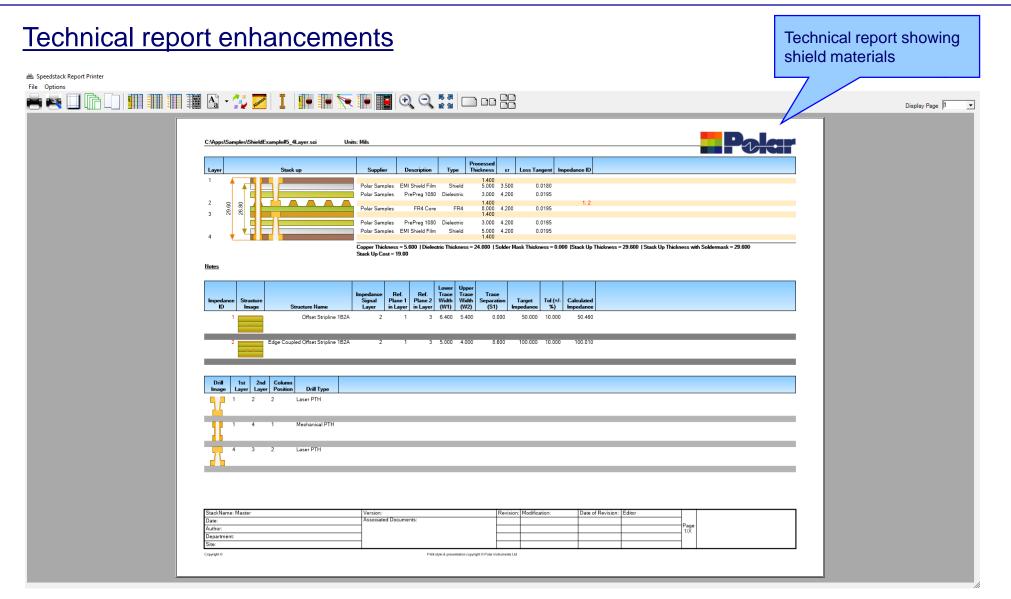
Shield properties

<u>File Edit View Tools Unit</u>	ts External Utility <u>H</u> elp	.stk Project : ShieldExample#4_4Layer.sci			_		View and customise the Shield properties. Useful
🗎 🗾 🎊 🔔 📲	📑 🚺 🕈 🔁 👎	= 🛋 🗮 💒 🛃 🌆 🔰	77717	Fiel 🗓 🎽 🗂 I	🎬 🥼 🏹	<u>7</u> 📌 🖊	in 'what-if' scenarios
		Shield Properties					
		Main Notes Attributes					
		General Information				Apply	
		Supplier	Polar Samples			Cancel	
		Supplier Description	SH/002			Close	
		Description	EMI Shield Film				
		Stock Number	1200-002				
		Туре	Shield				
		Shield Copper					
		Base Thickness	1.4000	Copper Coverage %	0.00		
		Finished Thickness	1.4000	Graphical Colour			
		Data Filename					
		Trace Inverted	Г	Remove Copper	_		
		Finishing Applied	Γ	(disabled if structures or sub	o-stacks exist)		
		Shield Dielectric					
		Base Thickness	5.0000	Td	0.0		
		Finished Thickness	5.0000	CAF Resistance	0.0		
		Dielectric Constant	4.2000	Z Axis Expansion	0.0		
		Loss Tangent	0.0195	Excess Resin	0.0000		
		Resin Content %	0.00	Isolation Distance	5.0000		
		Tg	0.0	Graphical Colour			
				Data Filenames			
1 - Shield EMI Shield Film	4.200/0.0195	1.410	1:4000				
	· ·			Dielectric Base Thickness Dielectric Finished Thickness	5.0000 5.0000		
- PP PrePreg 1080	4.200/0.0195		3.0000	Dielectric Constant	4.2		
2 - Core FR4 Core	4.200/0.0195		1.4000 8.0000 1.4000	Loss Tangent Resin Content	0.0195		
3	1.200/0.0100	<u>μπ</u>	1.4000	Tg	0		
- PP PrePreg 1080	4.200/0.0195		3.0000	Td	0		
- Shield EMI Shield Film	4.200/0.0195		5.0000	CAF Resistance Z Axis Expansion	0		
4			1.4000	Excess Resin	0.0000	-	
	Mils/Thous Target S	Stack Up Thickness = 30.0000 Stack Up Thickness = 2	29.6000 Stack Up Thickness	with Soldermask = 29.6000 Beta V21.02	2.01	//	

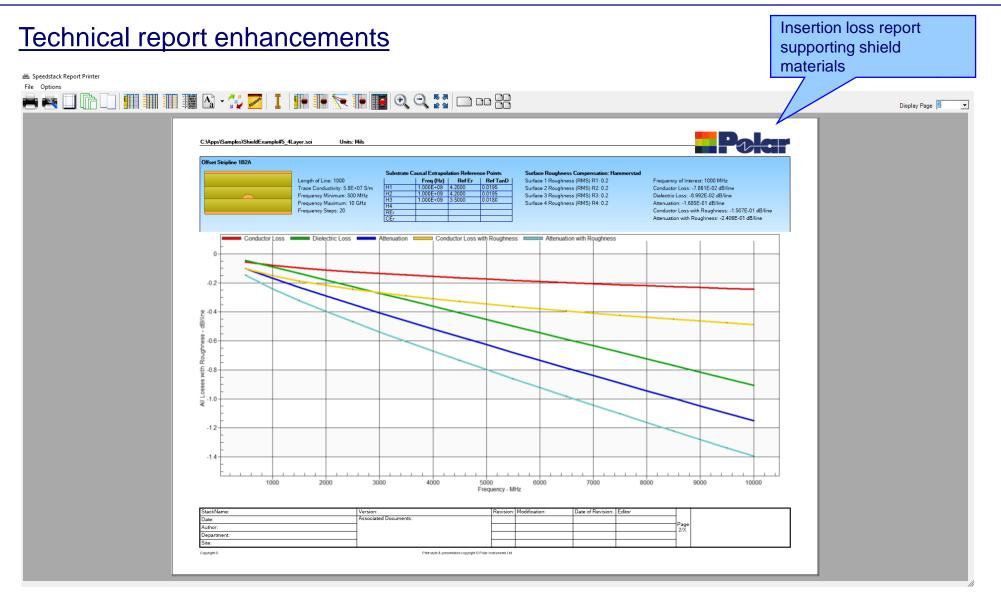

Controlled impedance and insertion loss calculations

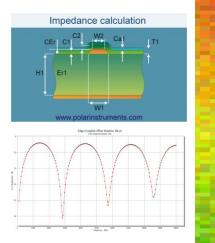
Copyright © Polar Instruments 2024

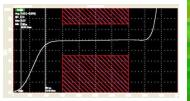

Controlled impedance and insertion loss calculations

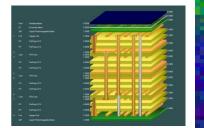


Controlled impedance and insertion loss calculations

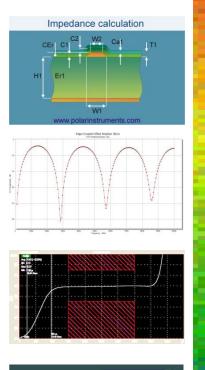

Please note: Speedstack is capable of supporting many shield types for stack up design and documentation. However, it is important to use the correct type of shield material for controlled impedance and insertion loss applications. They are often designated by the shield vendor as 'for high speed signal transmission applications'.

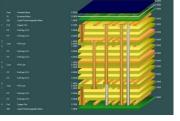


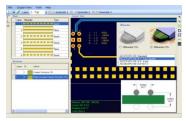

Import / Export enhancements


The following Import / Export options have been updated to support the new shield material introduced with Speedstack 2021:

- XML STKX v20.00 and SSX v10.00 import / export options
- CSV export option
- Gerber / DXF export option




Thank you for viewing this Speedstack 2021 - 2023 preview. If you have questions we would be delighted to help you. Your local contact information is contained on the following slide



Polar Logo & graphic devices are registered trade marks of Polar Instruments Ltd. Copyright Polar Instruments Ltd (c) 2024

For more information.	
For more information: Contact Polar now:	Phone
Contact i olar now.	Thone
USA / Canada / Mexico	
Erik Bateham	(503) 356 5270
Asia / Pacific	
Terence Chew	+65 6873 7470
UK / Europe	
Neil Chamberlain	+44 23 9226 9113
Germany / Austria / Switzerland Hermann Reischer	+43 7666 20041-0
	THO 1000 2004 1-0
www.polarinstruments.com	

2 E/2

Q EQ C3

Polar Logo & graphic devices are registered trade marks of Polar Instruments Ltd. Copyright Polar Instruments Ltd (c) 2024