

Getting Started with Speedstack

Richard Attrill - August 2019

Copyright © Polar Instruments 2019

Welcome to Speedstack

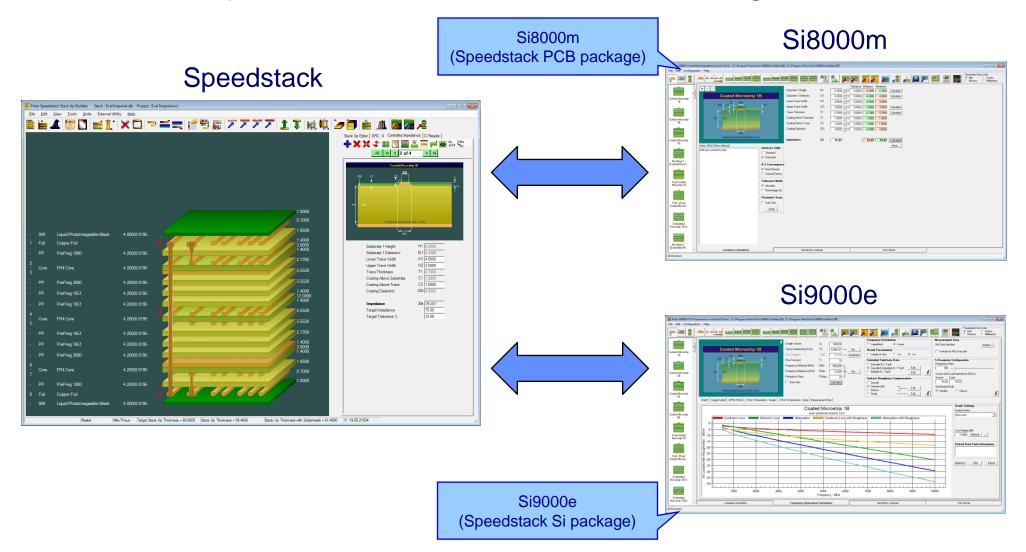
This Getting Started tutorial will familiarize you with the features and operation of Polar's Speedstack PCB Stack Up design system and guide you through the steps to create a Speedstack project (.sci) file.

If you would like a copy of the completed project file please request it from <u>polarcare@polarinstruments.com</u>.

<u>Contents</u>

- 4. Overview
- 7. Introducing the interface
- 10. Setting units and Virtual Material Mode
- 11. Using the Stack Up Wizard
- 14. Display modes
- 15. Editing the stack up
- 13. Drill information
- 27. Adding impedance structures
- 36. Frequency dependent loss calculations
- 41. Printing technical report
- 46. Summary contact details

Overview of Speedstack


Speedstack is a comprehensive stack up design environment for pre-layout engineers, PCB fabricators and value-add PCB brokers. By collating libraries of materials, costs and suppliers with critical design data, such as transmission line specifications or impedance control, Speedstack lets you produce accurate build documentation.

Speedstack's end-to-end approach to stack up design allows you to create documents that can be shared at every stage of the PCB supply chain and drastically reduces the time you need to create, document and control PCB layer stack ups.

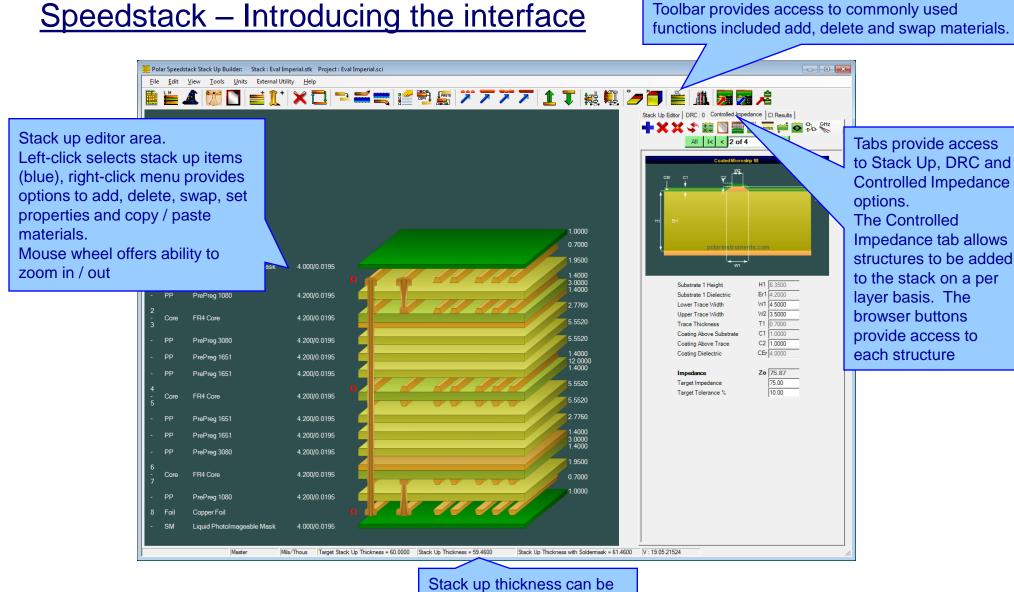
Speedstack links directly with the Si8000m Controlled Impedance and the Si9000e Insertion Loss field solvers

Controlled Impedance and Insertion Loss Modelling

5 Copyright © Polar Instruments 2019

Speedstack – Methods of creating stack ups

Speedstack has two key methods to create stack ups:


•Virtual Material Mode (VMM) – uses 'virtual' materials to generate stack ups. This is useful for exploring design options before committing to real materials.

•Material Library Mode – uses real materials to generate stack ups by referencing the Speedstack material library. This method provides an absolute definition of the stack up down to the exact materials used in the build.

The principle of building stack ups with Speedstack is the same regardless of the method used. The following slides will guide you through the process.

Getting Started with Speedstack

7 Copyright © Polar Instruments 2019

monitored via the status bar

Building a stack up from scratch

The following slides will guide you through the process of creating an 8 layer stack up. The stack has the following specification:

Units: Mils

- Number of Layers: 8
- Target Stack Up Thickness: 60 mils ± 10%
- Signal Layers: 1, 3, 6, 8 Plane Layers: 2, 4, 5, 7. Symmetrical build
- Material: Standard FR4, dielectric constant ~4.2, loss tangent ~0.02
- Preferred Core Thickness: 8 mils
- Copper Thickness: All layers 1oz copper, 1.4 mils

- Building a stack up from scratch (continued)
- Solder Mask: Covering outer layers, 1 mil
- PTH drill passes: layers 1 8
- Laser microvia passes: layers 1 2, 8 7
- Singled-ended impedance: 50 ohms ± 10% on layers 1, 3, 6, 8
- Differential impedance: 100 ohms ± 10% on layers 1, 3, 6, 8

Step 1: Setting the Units and Virtual Material Mode

From the Units menu select the 'Mils/Thou' option

E Pola	r Speed	stack Sta	ack Up Bu	ilder:	Stack : Eva	l Imperial.stk	Proj	ect : Eval	Imperia	l.sci						
File	Edit	View	Tools	Uni	ts External	Utility Help	_									
	LM		S.C		Microns	Shift+F1	-Pi		-				-	 		
		<u> </u>		~	Mils/Thous	Shift+F2	₫								1	♣
					Millimetres	Shift+F3										
					Inches	Shift+F4										

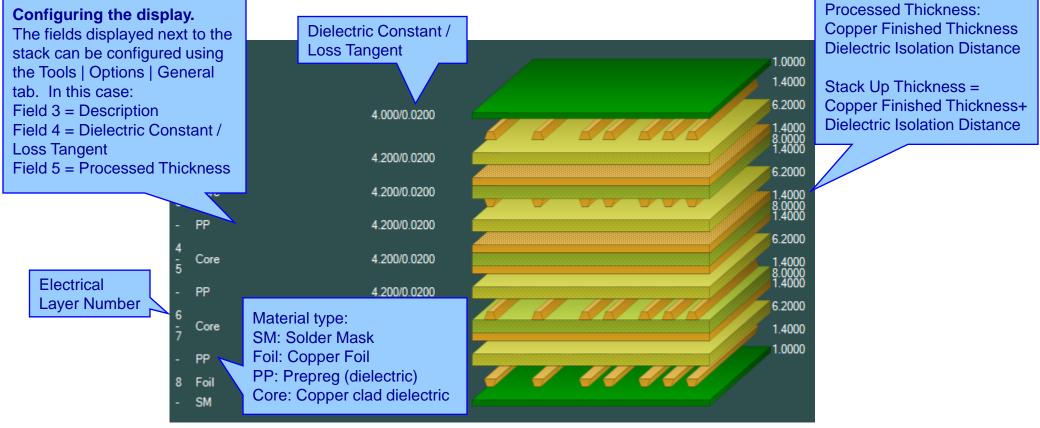
From the Tools menu select the 'Virtual Material Mode option

File Edit View		Jp Builder: Stack : Eval Imperial.stk Project : Eval Imperial.sci
		Options Ctrl+,
		Manufacturing Constraints Ctrl+M
		Set Finishing Method Ctrl+ N
		Set Target Stackup Thickness / Enable Finishing Ctrl+T
	~	Virtual Material Mode Ctrl+Shift+Y
		Language >

Step 2: Using the Stack Up Wizard to rapidly build the stack up

Stack Up Wizard (Virtual Material Mod Number of Layers Target Stack Up Thickness Positive Tolerance % Negative Tolerance % Symmetrical Plane Layers	de) 8 ▼ 60.0000 10 10 10 10 10 10	Nominal Dielectric Constant Nominal Loss Tangent Solder Mask Top Solder Mask Dielectric Constant Solder Mask Loss Tangent Solder Mask Thickness Preferred Core Thickness	4.2000 0.0200 Solder Mask Bottom ✓ 4.0000 0.0200 1.0000 Select ▼ 8.0000
2 3 4 5 6 7 8 *	2 3 4 5 6 7 8	Copper Thickness Build Type Foil Core	© Seguential/HDI Finish Cancel

Select the Stack Up Wizard toolbar icon **a**


- Enter the Basic Stack Data as previously described in the stack up specification
- The Number of Layers dropdown will populate the Plane Layers and Mixed Layers lists
- The Symmetrical checkbox setting will control how the Plane Layers are selected
- Once the fields are populated select the Finish button

Step 2: Using the Stack Up Wizard (continued)

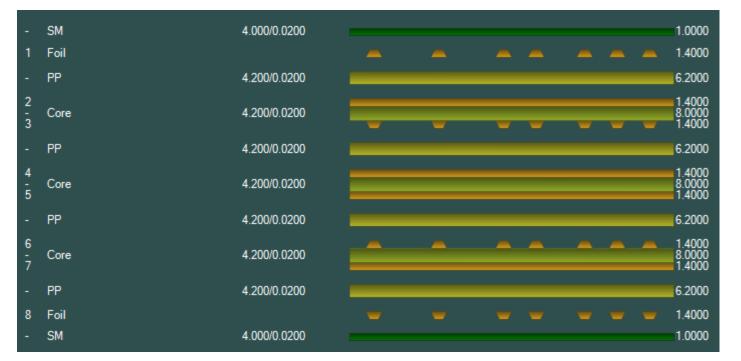
An option to enter the Stack Up Properties can be skipped

The stack up created by the Wizard will now be displayed

Step 3: Saving the Speedstack project

Now that a stack has been created we can save it

Use the File | Save Project As menu option and specify a filename


The filename will have a .SCI extension, recognisable by this icon

Step 4: Switching between 3D and 2D display modes

It is sometimes easier to view stack up in 2D by selecting 🥭

This will result in the following stack up display

The 3D display mode can be activated by selecting

Step 4: Editing the stack up

Once the stack up has been created using the Wizard it is possible to make changes on a per material basis using the various editing functions

- Click on the material that you wish to edit
- Selected material will highlight in blue
- Use the right-click menu and select option or use toolbar icons

4.00	0/0.0200	_					 	1.0000
		-						1.4000
4.20	0/0.0200						 	6.2000
	Add		•	Foil				
	Add C.I. Structu	ure		Core				
	Delete Swap			RCC Non-C Prepre	Copper C	ore		
	Copy Paste Above			Solder	mask			
	Paste Below			Flexibl Bondp	e Core			
	Properties Copy Material I Paste Material I			Adhes Coverl	ive			
	Set to Signal Set to Plane			Ident Peelab	le			
	Set to Mixed Set to Hatched			Drill				
	View Hatch Pro Edit Hatch Prof							
	Move Up Move Down							
	Flexi-Rigid		Þ					

Step 4: Editing the stack up (continued)

- Add: Adds the chosen material above or below the selected item 🚞
- Delete: Removes the selected material
- Swap: Swaps material with another of the same type
- Copy: Copies the selected material to clipboard
- Paste Above: Pastes the copied material above selected item
- Paste Below: Pastes the copied material below selected item
- Move Up: Move the selected material up one position
- Move Down: Move the selected material down one position
- Properties: Change the properties of the selected material

<u>Step 4: Editing the stack up – electrical layers only</u>

Signal: Set electrical layer to signal

Plane: Set electrical layer to plane

Mixed: Set electrical layer to mixed

Hatched: Set electrical layer to hatched (separately licensed)

Setting the electrical layer types on the stack up will allow Speedstack to guide you through the process of adding controlled impedance structures. It will suggest the appropriate structure based on the signal layer and plane layer positions within the stack. More details will be shown in Step 6.

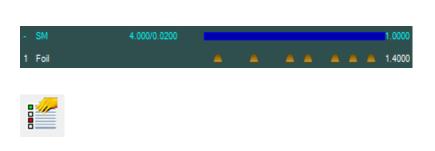
7

<u>Step 4: Editing the stack up – symmetrical mode</u>

Many stack ups are symmetrical, so viewing from the centre the upper and lower sections of the stack up have exactly the same materials

Speedstack allows you to work in symmetrical mode by selecting This is a toggle function, selecting this option again disables this mode

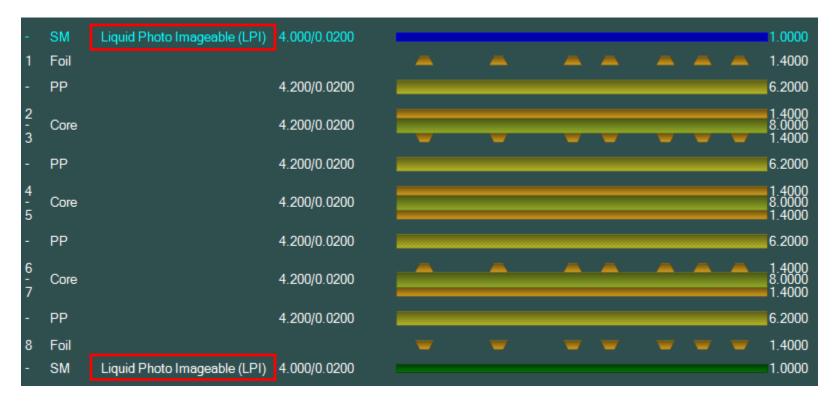
When this mode is enabled the editing functions will process both the upper and lower materials of the stack simultaneously, saving significant time.


Step 4: Editing the stack up – change material properties

All the information about each material is stored in the material properties. To change properties of the stack created by the Wizard

- Enable symmetrical mode
- Select the top solder mask layer
- Select Properties
- Enter text in the Description field
- Select Apply to store information

Solder Mask Properties	
Main Notes Attributes	
General Information Supplier	
Supplier Description Description	Liquid Photo Imageable (LPI)
Stock Number Type	
Solder Mask	
Thickness	1.0000 Mask Colour



Step 4: Editing the stack up - change material properties (cont'd)

The stack up will now display the solder mask description text

Step 4: Editing the stack up - change material properties (cont'd)

Copper Foil 1oz

Prepreg Region

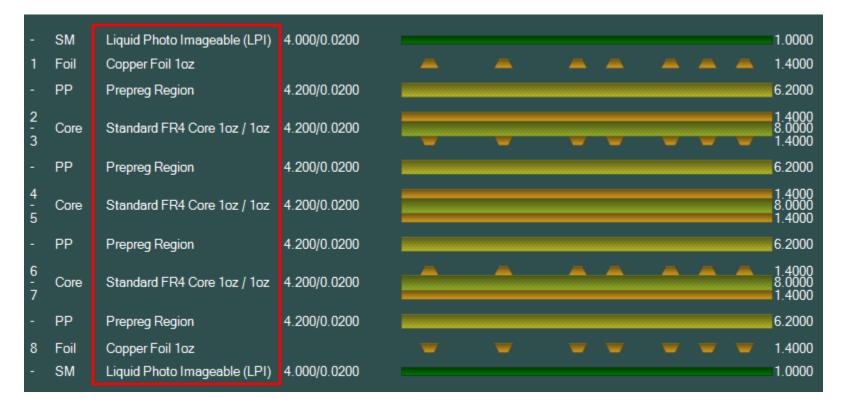
Standard FR4 Core 1oz / 1oz

Repeat the process to set properties for the other materials

Description

Description

Description

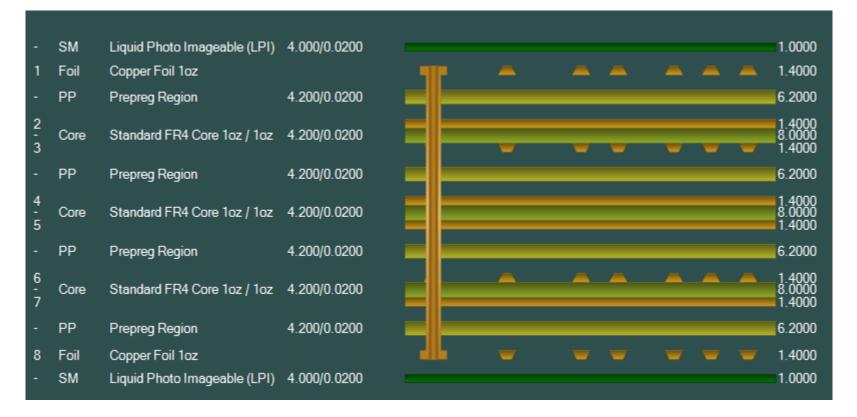

- Foil properties
- Prepreg properties
- Core properties
- When complete disable symmetrical mode

Step 4: Editing the stack up - change material properties (cont'd)

The stack up will now display description properties for all materials

Step 5: Adding drilling information

Select the Add Drill toolbar icon 👢


- Select the Column where the drill will be added to the stack. 1 is the leftmost column.
- Set the First and Second Electrical Layer Numbers, in this case a PTH drill will start on layer 1 (top) and end on layer 8 (bottom)
- Select Add to add the drill

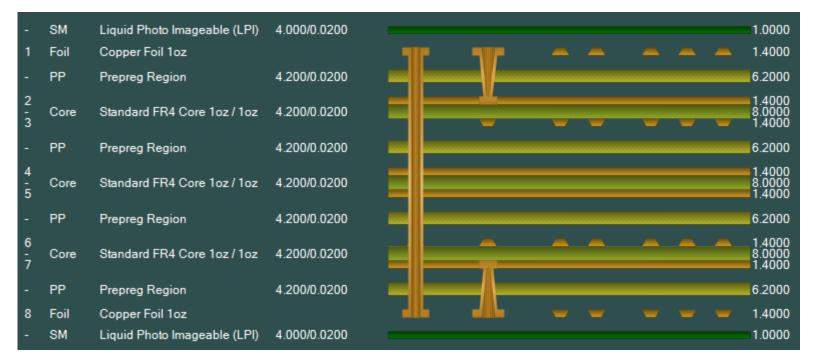
📕 Add Drill		—
Electrical Layers		
Column	First Electrical Layer No	Second Electrical Layer No
1 🔹	1 💌	8
Drill Information		Hole Information
Mechanical	Fill Type	Hole Count
C Laser	No Fill	0
C Laser (Stacked)		Different Hole Sizes
Through Plated		0
Data Filenames		Minimum Hole Size
		0.0000
		,
r		
		Add Close

Step 5: Adding drilling information (continued)

The stack up will now display the Plated Through Hole (PTH) drill

Step 5: Adding drilling information (continued)

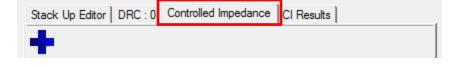
Now we will add the laser microvias. Select the Add Drill toolbar \mathbf{L}


- Select Column = 2
- Set the First and Second Electrical Layer Numbers, in this case the drill will start on layer 1 and end on layer 2
- Select Laser
- Select Add to add the drill
- Repeat the process,
 Column = 2, First = 8,
 Second = 7, select Laser
- Select Add to add the drill

📒 Add Drill		×
Column	First Electrical Layer No	Second Electrical Layer No
Drill Information C Mechanical C Laser C Laser (Stacked) ✓ Through Plated Data Filenames 	Fill Type No Fill	Hole Information Hole Count 0 Different Hole Sizes 0 Minimum Hole Size 0.0000
		Add Close

Step 5: Adding drilling information (continued)

At this stage the stack up will display all the required drilling information


This is an appropriate stage to save the stack up project as described in Step 3.

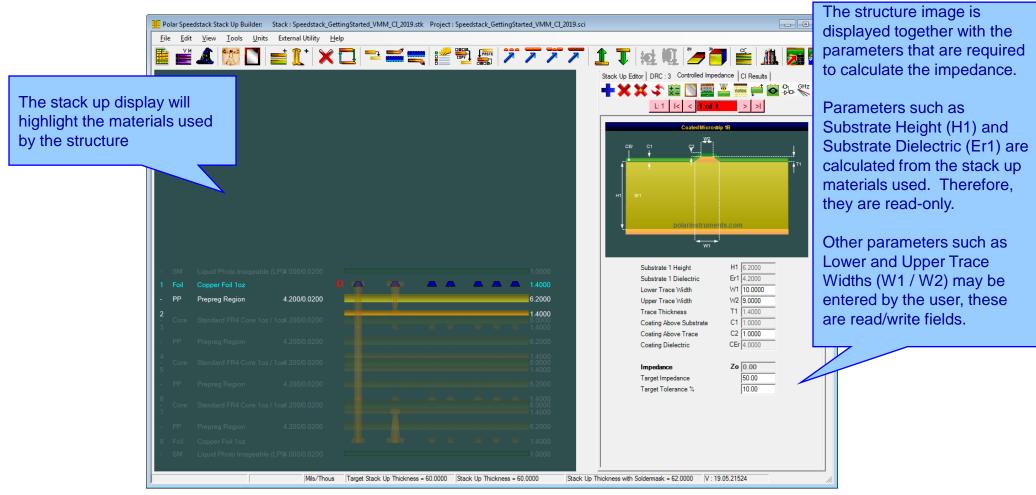
Step 6: Adding impedance structures

- Select the Controlled Impedance
 tab
- Click on the signal layer of the stack where the structure is to reside, in this case layer 1
- Select

 to add a structure, the Structure Control dialog will be displayed. Only structures appropriate to layer 1 will be offered.
- Enter Target Impedance and Tolerance as shown, select 'Coated Microstrip 1B' icon, Apply and then Done to dismiss dialog

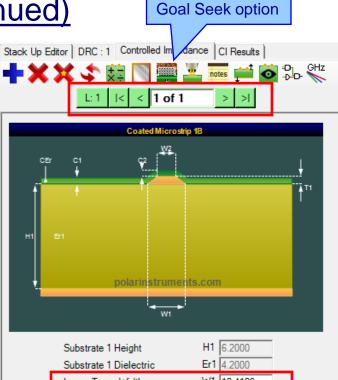
-	SM	Liquid Photo Imageal	ble (LPI)4.000/0.0200						1.0000
1		Copper Foil 1oz		- 11-	- 1	r i	Δ Δ		1.4000
-	PP	Prepreg Region	4.200/0.0200						 6.2000

Structure Control		
Number Of Signal		Apply
Single Trace		Apply All
C Differential	Coated Microstrip 1B	
	Coated Coplanar Strips With Low	Advanced
Target Impedance	50.00	
Target Tolerance %	10.0	
Total of Structures Added	1	
Reference Plane	2	Done
		Cancel


polarinstruments.com

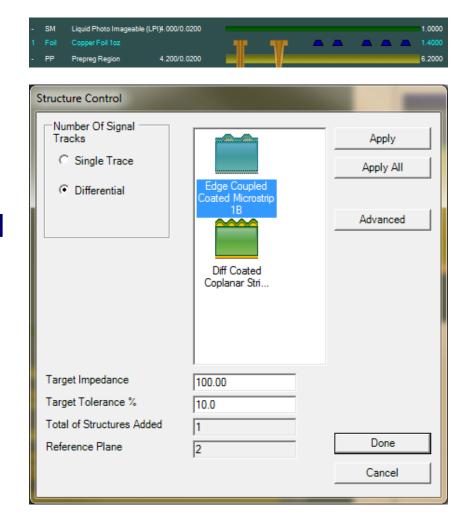
27 Copyright © Polar Instruments 2019

Step 6: Adding impedance structures (continued)


The new structure will appear on the controlled impedance tab

Step 6: Adding impedance structures (continued)

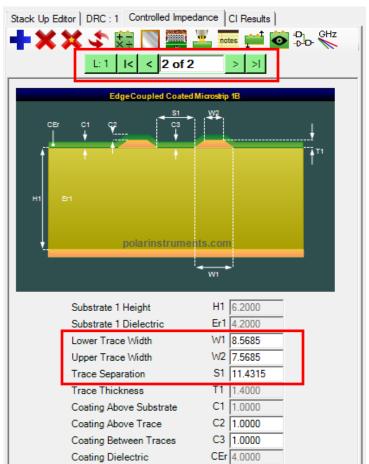
- Key in the desired trace widths
- Click on the S to Rebuild and Calculate the impedance structures
- Notice that the Impedance (Zo) result updates
- Use the solution to Goal Seek parameter(s) in order that the Target Impedance is met. Select 'W1 / W2 only' and watch Speedstack adjust these parameters to achieve the 50 ohms Target Impedance
- Notice that the trace widths (W1/W2) and the impedance results (Zo) updates
- Green indicator denotes within tolerance



Substrate Height	HI [6.2000
Substrate 1 Dielectric	Er1 4.2000
Lower Trace Width	W1 10.4109
Upper Trace Width	W2 9.4109
Trace Thickness	T1 1.4000
Coating Above Substrate	C1 1.0000
Coating Above Trace	C2 1.0000
Coating Dielectric	CEr 4.0000
Impedance	Zo 50.15
Target Impedance	50.00
Target Tolerance %	10.00

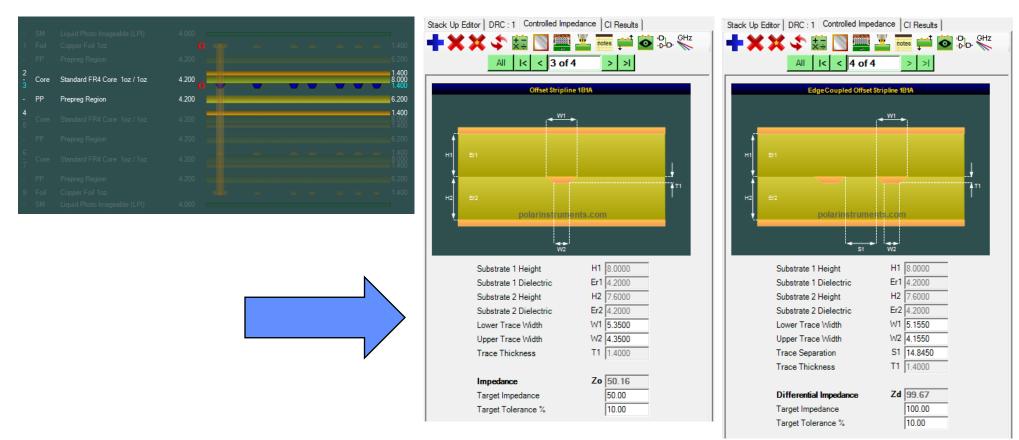
Step 6: Adding impedance structures - differential

- Click on layer 1 of stack
- Select
 to add a structure, select Differential, enter Target Impedance and Tolerance as shown, choose 'Edge Coupled Coated Microstrip 1B', Apply and then Done to dismiss dialog
- The differential structure will be added to the stack. Notice that this is structure 2 of 2.



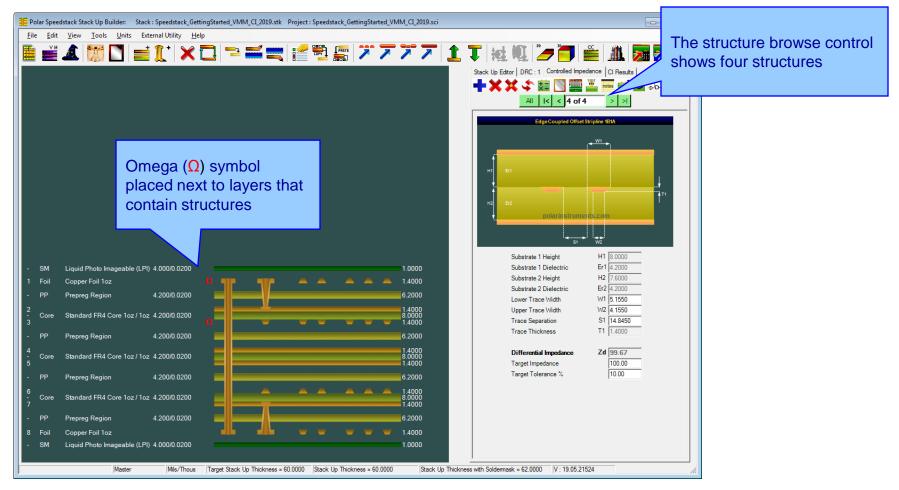
Step 6: Adding impedance structures - differential

- Key in the desired trace widths / separation
- Use the solution to Goal Seek parameter(s) in order that the Target Impedance is met. Select 'W1 / W2 constant pitch' and watch Speedstack adjust these parameters to achieve the 100 ohms Target Impedance
- Notice that the trace widths and separation (W1 / W2 / S1) and the impedance results (Zd) updates
- Green indicator denotes within tolerance



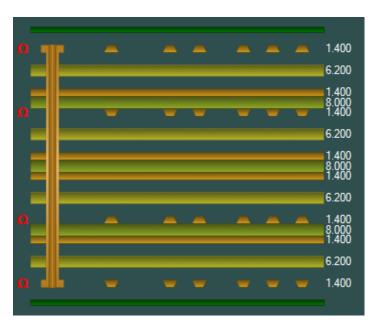
Differential Impedance	Zd 100.04
Target Impedance	100.00
Target Tolerance %	10.00

Step 6: Adding impedance structures - layer 3


Follow the same process to add single-ended 50 ohms and differential 100 ohms structures to layer 3.

Step 6: Adding impedance structures

At this point we have four structures, two on layer 1, two on layer 3



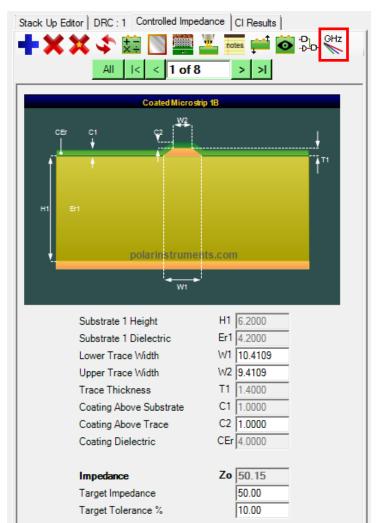
Step 6: Adding impedance structures – mirroring structures

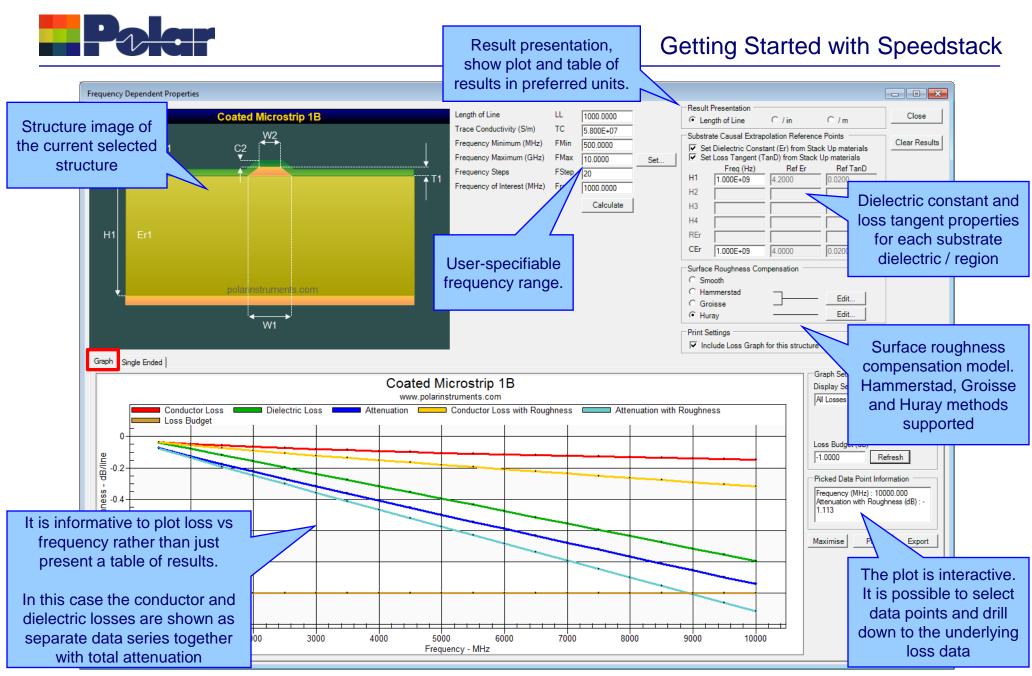
- As the stack is symmetrical, selecting 'Mirror Structures' will place four more structures on the lower half of the stack
- At this point the structure browse control will display eight structures in total
- The Ω symbol is now placed next to layers 1, 3, 6, 8
- This is an appropriate stage to save the stack up project as described in Step 3.

All < < 1 of 8 > >

Step 6: Impedance structures - other information

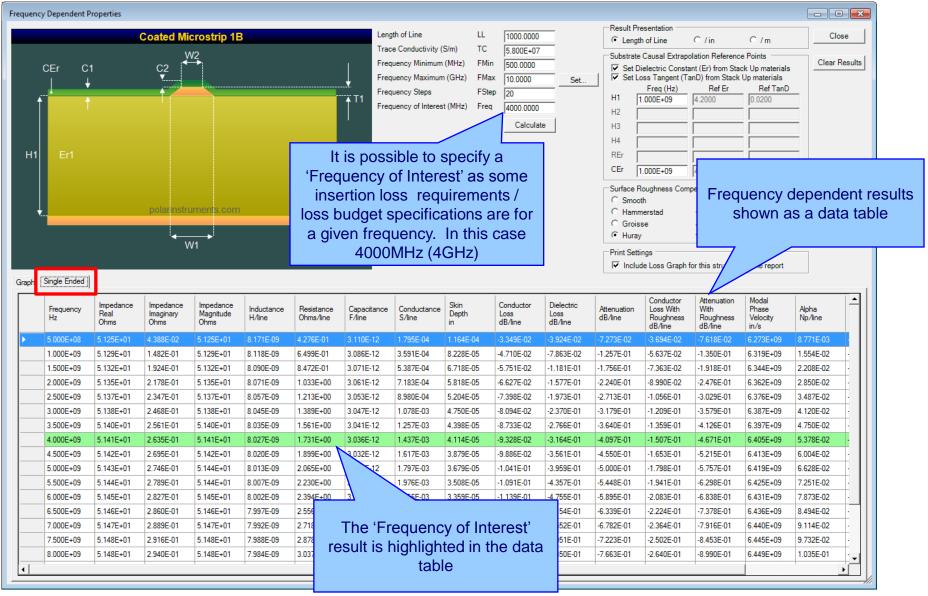
- If changes are made to the stack up that effect the impedance structures, a 'Rebuild' warning is displayed
- Click on the S to rebuild the structures with the latest stack up information and re-calculate the impedance results
- If the structure browse control indicator displays red it denotes a structure impedance result outside tolerance. In this case structure 2 of 8. This usually can be resolved by using the Goal Seeking function to adjust trace widths / separation

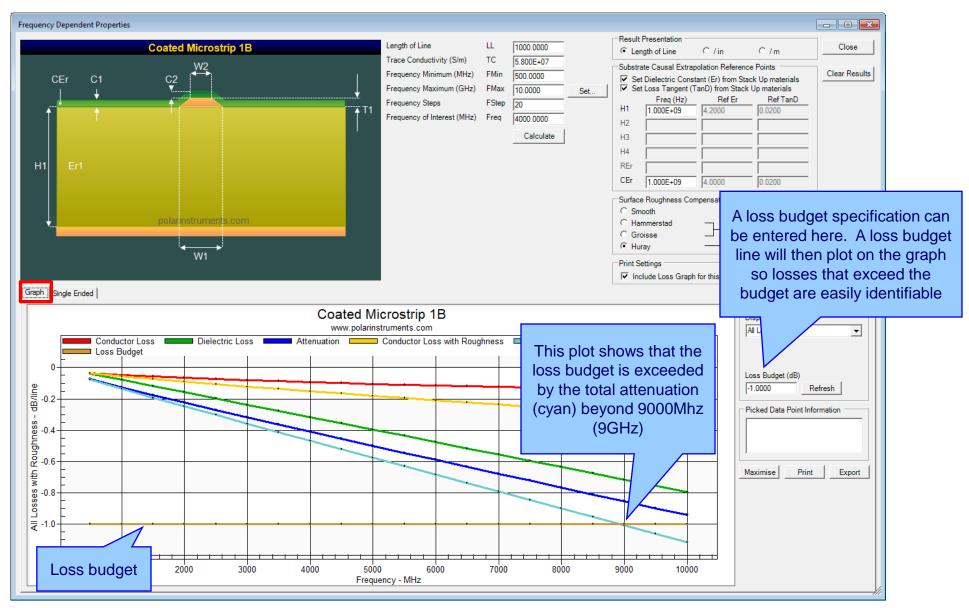



Step 7: Frequency Dependent Loss Calculations

- Each structure that has been added to the stack up has a set of Frequency Dependent Properties that are accessible using this icon
- In this example we have selected structure 1 of 8.

All I< < 1 of 8 > >I


- On selecting the silon the following dialog is displayed
- Please note: Frequency Dependent Loss Calculations are only available with the Speedstack Si package



Getting Started with Speedstack

Getting Started with Speedstack

39 Copyright © Polar Instruments 2019

Step 7: Frequency Dependent Loss Calculations

Substra	te Causal Extrap	olation Reference	e Points
P	Dielectric Const Loss Tangent (T		
	Freq (Hz)	Ref Er	Ref TanD
H1	1.000E+09	4.2000	0.0200
H2			
H3			
H4			
REr			
CEr	1.000E+09	4.0000	0.0200

In order to accurately calculate Dielectric Loss it is important to understand the material / substrate properties.

These substrate properties including dielectric constant (Er) and loss tangent (TanD) are specified here for each structure substrate region.

Speedstack causally extrapolates Er and TanD over the specified frequency range using the Svensson-Djordjevic method, hence the ability to specify the extrapolation reference points for each substrate region. The reference point data is usually available from the material supplier data sheet and can be added to the Speedstack material library. The checkbox options will automatically populate these fields from the stack up materials.

	Toughiness parameters.
Surface Roughness Compensation	
C Smooth	Speedstack supports m
C Hammerstad	models: Hammerstad, (
O GroisseEdit	Cannonball-Huray. In t
Huray Edit	Huray method is used,
	for the required roughne
Surface Roughness Compensation - Huray	
Ratio of Area	I.0000
Effective Bal	I Radius (μm) 0.2690
	Count (sq μm) 2.6050
Number of B	alls in Area 14
	\wedge
and the second	
a stranger of the	
and the second	
Images by courtesy of Circuit Foil Luxembourg	
Common hold the man Montol Enable Car	nonball-Huray 🔽
Cannonball-Huray Model Enable Car	
Rz Matte	Roughness
Rz Matte (μm) <u>5.0000</u>
Matte-side	
	- Calculate
Drum-side	
Rz Drum	Roughness
Rz Drum (μm) 4.0000
www.polarinstruments.com	
Courtesy of Bert Simonovich, Lamsim Enterprises Inc Application Note	

To accurately calculate Conductor Loss it is necessary to specify the surface

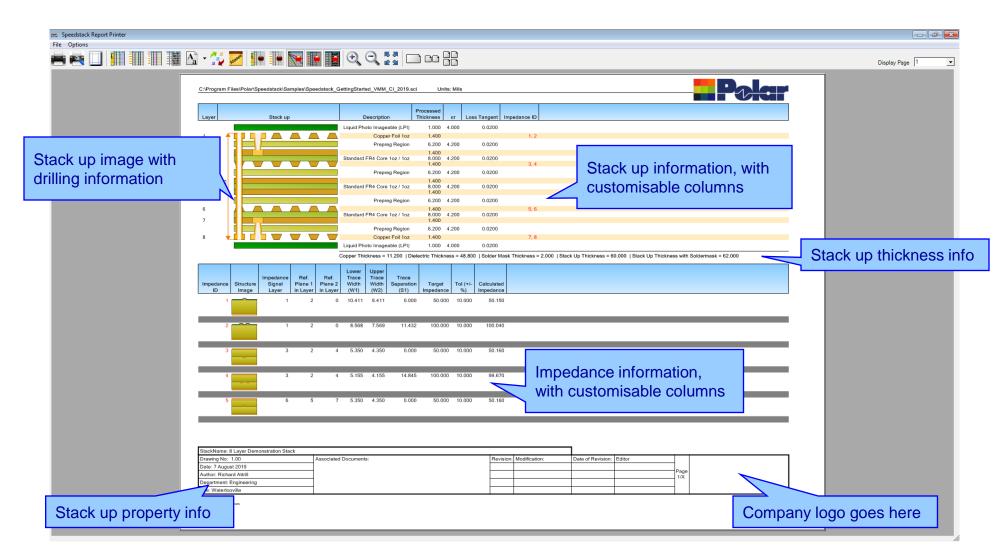
ultiple roughness Groisse, Huray and his example the the dialog prompts ess parameters.

> Apply Cancel

polarinstruments.com

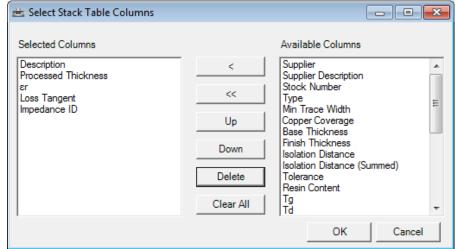
40 Copyright © Polar Instruments 2019

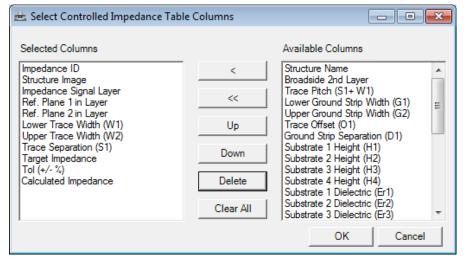
Step 8: Printing a technical report


The 8 layer stack up with its drilling and impedance structure information is now complete, the final step is to generate a technical report

- Use the File | Properties option to add useful information about the stack up, such as descriptive stack up name, date created, author and company information
- Load the Technical Report option by using the File | Print | Technical Report

Stackup File properties						×
The fields below are option	onal:					
Descriptive Stackup Nar	ne	8 Layer Den	nonstration Stack		 	
Stack Top Side Label					 	
Stack Bottom Side Label					 	
Date Created		7 August 20	19		 	
Version		1.00			 	
Revision Information						
Revision	Modifica	ation	Date	Edito		_
2	<u> </u>			<u>-</u>	 	-
3	<u> </u>			÷	 	-
4				<u> </u>	 	-
			<u></u>		 	
Author		Richard Attri	I			
Company		Polar Instrum	nents Ltd		 	
Department		Engineering				
Site		Waterlooville	9			
Associated Documents						*
					Ok	1

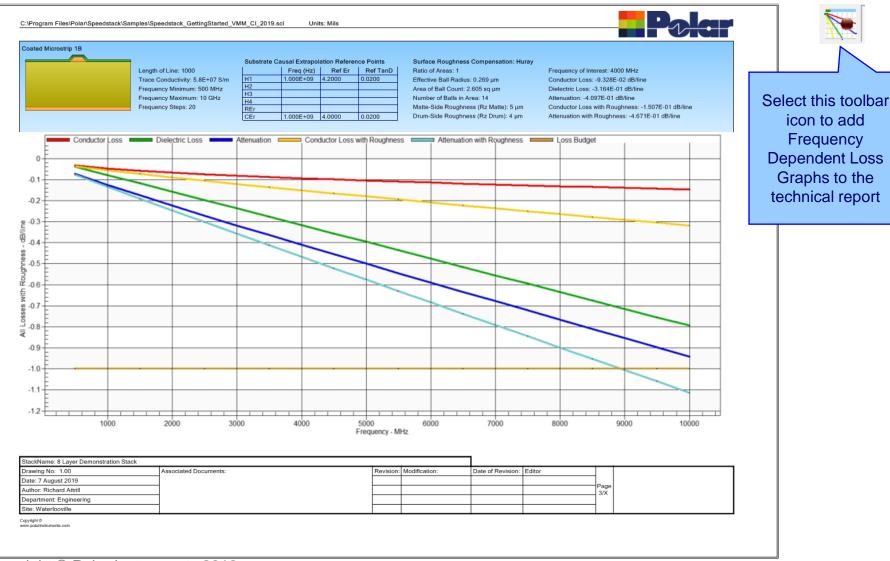

Step 8: Printing a technical report (continued)



Step 8: Printing a technical report (continued)

 Use the III Select Stack Data Columns option to select the fields that you wish to print next to the stack up graphic

Use the Select Impedance
 Data Columns option to configure
 the impedance structure table



Step 8: Printing a technical report (continued) - sample output

ər	Stack up				escriptio		Processed Thickness	εr	Loss	Tangent	Impedance ID						
	Эласк ир			Liquid Pho			1.000			0.0200	impedance ip						
				Elquid Pili		er Foil 1oz	1.400	4.000		0.0200	1, 2						
						eg Region	6.200	4,200		0.0200							
					riopi	oginogion	1.400	4.200		0.0200							
				Standard	FR4 Core	1oz / 1oz	8.000	4.200		0.0200							
					Deserve		1.400 6.200	4 000		0.0200	3, 4						
					Prepri	eg Region	1.400	4.200		0.0200							
80.00				Standard	FR4 Core	1oz / 1oz	8.000	4.200		0.0200							
° .							1.400										
					Prepre	eg Region	6.200	4.200		0.0200							
				Standard	FR4 Core	1oz / 1oz	1.400 8.000	4.200		0.0200	5, 6						
							1.400										
					Prepre	eg Region	6.200	4.200		0.0200							
↓ ■					Coppe	er Foil 1oz	1.400				7, 8						
				Liquid Pho	oto Image	able (LPI)	1.000	4.000		0.0200							
			0	opper Thi	ckness =	11.200 Die	lectric Thick	1ess =	48.800	Solder Ma	sk Thickness	= 2.000	Stack Up Thickne	ess = 60.0	.000 Stack Up Thickn	ess with	h Soldermask = 62.000
	Impedance	Def	Def	Lower	Upper	Traca											
dance Stru	Impedance Icture Signal	Ref. Plane 1	Ref. Plane 2	Trace Width	Trace Width	Trace Separation	Target	Т	ol (+/-	Calculated							
	age Layer	in Layer	in Layer	(W1)	(W2)	(S1)	Impedant		%)	Impedance							
1 🚅	1	2	0	10.411	9.411	0.000	50.00	0 1	0.000	50.150							
2	1	2	0	8.568	7.569	11.432	100.00	00 1	0.000	100.040							
3	3	2	4	5.350	4.350	0.000	50.00	00 1	0.000	50.160							
				5 455	4.455	44.045	400.00	20 4	0.000	00.070							
4	3	2	4	5.155	4.155	14.845	100.00	10 1	0.000	99.670							
5	6	5	7	5.350	4.350	0.000	50.00	0 1	0.000	50.160							
°	°	5		5.550	4.350	0.000	50.00	10 1	0.000	50.160							
Name: 8 Laye	er Demonstration Sta	ck															
ng No: 1.00			ssociated	Document	s:					Revis	ion: Modificat	on:	Date of Re-	vision: E	Editor		
7 August 201																	
r: Richard Attr																Page 1/X	
tment: Engine	eering															1	
Vaterlooville																	

Step 8: Printing a technical report (continued) - sample output

45

Summary

Thanks for completing the Getting Started tutorial.

I hope it proved a useful introduction to the stack up creation process using Speedstack and that you enjoyed using it.

If you have any questions please feel free to contact your local Polar office at:

www.polarinstruments.com/distrib/international_offices.html

or contact us at polarcare@polarinstruments.com

Thanks again for using Speedstack.

This material is Copyright (C) Polar Instruments and maybe only be distributed solely for the purpose of training on licensed installations of Polar Speedstack and related Polar products. This document should not be edited or amended in any way without the express written permission of the copyright holder.