

Building stackups using the Materials Library

Richard Attrill - August 2013

Copyright © Polar Instruments 2013

Welcome to Speedstack

This tutorial is one of a series of documents that will help guide you through the process of building stackups using Speedstack. The other modules in the series are as follows:

Module 1: Getting Started Guide

Module 2: Building stackups using the Materials Library

Module 3: Building a rigid-flex construction

Building stackups using the Materials Library

Building a stackup from scratch using the Materials Library

The following slides will guide you through the process of creating an 8 layer stackup. The stack has the following specification:

Units: Mils

- Number of Layers: 8
- Target stackup Thickness: 60 mils ± 10%
- Signal Layers: 1, 3, 6, 8 Plane Layers: 2, 4, 5, 7. Symmetrical build
- Material: Standard FR4, nominal dielectric constant ~ 4.2
- Preferred Core Thickness: 8 mils
- Copper Thickness: All layers 1oz copper, 1.4 mils

Building a stackup from scratch using the Materials Library (continued)

Solder Mask: Covering outer layers, 1 mil

- PTH drill passes: layers 1 8
- Singled-ended impedance: 50 ohms ± 10% on layers 1, 3, 6, 8
- Differential impedance: 100 ohms ± 10% on layers 1, 3, 6, 8

Step 1: Setting the Units and Materials Library Mode

From the Units menu select the 'Mils/Thou' option

From the Tools menu de-select the 'Virtual Material Mode' option, this will enable Materials Library Mode. Note the enabled icon

Copyright © Polar Instruments 2013

Step 2: The Materials Library Mode

The Materials Library is accessed by using the toolbar icon 🏥

1	C:\Program Files\Polar\Speedstack\Samples\Speedstack Imperial.mlbx								
Materials library tabs. Each tab represents a different material type									
	Foils	Prepregs RCCs Cores Solder Masks Ident Inks Peelable Masks Coverlays Bond Ply Adhesive Flexible Cores							
		Supplier	Supplier Description	Description	Stock Number	Cu Base Thickness	Туре	Cost	
	•	Polar Samples	FO/001	Copper Foil	100-001	0.7	Copper	1 (
		Polar Samples	FO/002	Copper Foil	100-002	1.4	Copper	2	
		PolarSamples	FO/003	Copper Foil	100-003	2.8	Copper	3	

The library is divided into 11 material types, each type is accessible by selecting the appropriate tab. For this tutorial we will use the Polar Samples library that is supplied with Speedstack, but you may prefer to add your own materials.

It is also possible to import / export libraries in CSV format in order to access data from other systems

Step 2: The Materials Library Mode – Material Partners

Through our Material Partners Program we are able to supply Speedstack material libraries from a number of PCB laminate vendors.

For a full list of Material Partners please visit:

http://www.polarinstruments.com/products/stackup/material_partner.html

Step 3: Using the stackup Wizard to rapidly build the stackup

Select the StackUp Wizard toolbar icon 🊨

- Enter the Stack Data as previously described in the stack up specification
- By selecting the option for the Foil, Prepreg, Core and Solder Mask material types it is possible to nominate the preferred Material Library items to be used in the stackup
- The Plane Layers may be selected by choosing each layer, 2, 4, 5 and 7
- Under Drilling, check Through-Plated
- Once the fields are populated select the Apply button

📒 Stack Up Wi	zard	×
General		
Layer count	8 💌	
Build Type	Foil]
Materials		
Foil	Copper Foil FO/002	Clear
Prepreg	PrePreg 1651 PP/004	Clear
Core	FR4 Core CO/017	Clear
Soldermask	Liquid PhotoImageable Mask S	Clear 😲
Planes 7	•> 2 R	emove
Drilling	Plated 🗌 Non Through	-Plated
	Apply	Cancel

polarinstruments.com

Step 3: Using the Stackup Wizard (continued)

An option to enter the stackup properties can be skipped

The stackup created by the Wizard will now be displayed

Step 4: Saving the Speedstack project

Now that a stack has been created we can save it

Use the File | Save Project As menu option and specify a filename

The filename will have a .SCI extension, recognisable by this icon

Step 5: Switching between 3D and 2D display modes

It is sometimes easier to view stackup in 2D by selecting 🥭

This will result in the following stackup display

The 3D display mode can be activated by selecting

Step 6: Editing the stackup

Once the stackup has been created using the Wizard it is possible to make changes on a per material basis using the various editing functions

- Click on the material that you wish to edit
- Selected material will highlight in blue
- Use the right-click menu and select option or use toolbar icons

Full details of the Speedstack editing functions can be found in the 'Getting Started Guide'

4.000	• • • • • 1.400 6.200
Add Add C.I. Structure Full Stack Up Editor Mode Set to Signal Set to Plane Set to Mixed Set to Hatched View Hatch Profile Edit Hatch Profile Copy	Foil Core RCC Flexible Core Bondply Adhesive Prepreg Non-Copper Core Soldermask Coverlay Ident Peelable
Paste Above Paste Below Delete Swap Move Up Move Down Properties Flexi-Rigid ▶	Drill

nstruments.com

Step 7: Swapping Materials

When designing stackups it is quite a common requirement to swap one set of materials for another

- Select the material that you wish to swap, in this case Prepreg 1651
- Selected the Swap option
- Choose the new item, in this case a
 Prepreg 1080 material
- Confirm the Swap, the existing material will now be swapped

×IT →] [] ¥+	¶×		
_	Supplier	Supplier Description	Description	Stock Number
►	Polar Samples	PP/001	PrePreg 1080	300-001
	Polar Samples	PP/002	PrePreg 3080	300-002

Step 7: Swapping Materials (continued)

The stackup will now display the Prepreg 1080 in place of the original Prepreg 1651

Step 8: Using Copy / Paste to make rapid stack changes

It is possible to duplicate materials within the stack using the Copy / Paste functionality

- Select the material that you wish to copy, in this case Prepreg 1080 that was swapped into the stack during step 7
- Selected the Copy option
- Select the material in the stack immediately above where you wish to paste the Prepreg 1080
- Select the Paste Below option

Step 8: Using Copy / Paste to make rapid stack changes (cont'd)

Notice that there are now two Prepreg 1080 materials between electrical layers 1 and 2

Step 9: Deleting materials

Deleting unwanted items can be required when they have been replaced with alternative items

- Select the material that you wish to delete, in this case Prepreg 1651 that exists between layers 3 and 4
- Selected the Delete option
- Notice that the material is removed
- Repeat this process for the two remaining Prepreg 1651 materials that exists between layers 5 – 6 and 7 - 8

4.200	1.400 8.000 1.400
4.200	6.000
4.200	1.400 8.000 1.400

Step 9: Deleting materials (continued)

At this stage all remaining PrePreg 1651 materials have been removed from the stackup

Step 10: Using Copy / Paste to complete the stack

It is now possible to duplicate Prepreg 1080 material within the stack using the Copy / Paste functionality

- Select the material that you wish to copy, in this case Prepreg 1080
- Selected the Copy option
- Select the material in the stack immediately above where you wish to paste the Prepreg 1080
- Select the Paste Below option
- Repeat this process between layers
 5 6 and 7 8

Step 10: Using Copy / Paste to complete the stack (continued)

Here is the final stack using Prepreg 1080 materials throughout

Step 10: The completed stackup

The Stackup Wizard allows you to quickly build a stackup by selecting the preferred materials from the library. Once the stack is built it is possible to quickly modify the stack by swapping materials and using the copy / paste facilities to duplicate existing preferred materials.

Stack up generated by Wizard

Modified stack to meet final requirements

Step 11: Adding impedance structures

- Select the Controlled Impedance
 tab
- Click on the signal layer of the stack where the structure is to reside, in this case layer 1
- Select

 to add a structure, the Structure Control dialog will be displayed. Only structures appropriate to layer 1 will be offered.
- Enter Target Impedance and Tolerance as shown, select 'Coated Microstrip 1B' icon, Apply and then Done to dismiss dialog

-	SM	Liquid Photolmageable Mask	4.000				
1				712			
-	PP	PrePreg 1080	4.200				3.000
	PP	PrePreg 1080	4.200				3.000

Structure Control		
Number Of Signal Tracks © Single Trace © Differential	Coated Microstrip 18 Coated Coplanar Strips With Low	Apply Apply All Advanced
Target Impedance Target Tolerance % Total of Structures Added Reference Plane	50.00 10.0 1 2	Done Cancel

Step 11: Adding impedance structures (continued)

The new structure will appear on the controlled impedance tab

Step 11: Adding impedance structures (continued)

- Key in the desired trace widths
- Click on the C to Rebuild and Calculate the impedance structures
- Notice that the Impedance (Zo) result updates
- Use the approximation of Goal Seek parameter(s) in order that the Target Impedance is met. Select 'W1 / W2 only' and watch Speedstack adjust these parameters to achieve the 50 ohms Target Impedance
- Notice that the trace widths (W1/W2) and the impedance results (Zo) updates
- Green indicator denotes within tolerance

Substrate 1 Height Substrate 1 Dielectric	H1 6.0000 Er1 4.2000
Lower Trace Width	W1 10.1563
Upper Trace Width	W2 9.1563
Trace Thickness	T1 1.4000
Coating Above Substrate	C1 1.0000
Coating Above Trace	C2 1.0000
Coating Dielectric	CEr 4.0000
Impedance	Zo 49.84
Target Impedance	50.00

Target Tolerance %

polarinstruments.com

10.00

Step 11: Adding impedance structures - differential

- Click on layer 1 of stack
- Select

 to add a structure, select Differential, enter Target Impedance and Tolerance as shown, choose 'Edge Coupled Coated Microstrip 1B', Apply and then Done to dismiss dialog
- The differential structure will be added to the stack. Notice that this is structure 2 of 2.

Structure Control		
Number Of Signal Tracks C Single Trace C Differential	Edge Coupled Coated Microstrip 18 Diff Coated Coplanar Stri	Apply Apply All Advanced
Target Impedance Target Tolerance %	100.00	
Total of Structures Added Reference Plane	2	Done Cancel

Step 11: Adding impedance structures - differential

- Key in the desired trace widths / separation
- Use the solution to Goal Seek parameter(s) in order that the Target Impedance is met. Select 'W1 / W2 constant pitch' and watch Speedstack adjust these parameters to achieve the 100 ohms Target Impedance
- Notice that the trace widths and separation (W1 / W2 / S1) and the impedance results (Zd) updates
- Green indicator denotes within tolerance

<u>Step 11: Adding impedance structures – layer 3</u>

Follow the same process to add single-ended 50 ohms and differential 100 ohms structures to layer 3.

Step 11: Adding impedance structures

At this point we have four structures, two on layer 1, two on layer 3

Step 11: Adding impedance structures – mirroring structures

- As the stack is symmetrical, selecting 'Mirror Structures' will place four more structures on the lower half of the stack
- At this point the structure browse control will display eight structures in total
- The Ω symbol is now placed next to layers 1, 3, 6, 8
- This is an appropriate stage to save the stackup project as described in Step 4

All	<	<	1 Of 8	>	>
	18	1	1010	1	~

Step 12: Impedance structures – other information

- If changes are made to the stackup that effect the impedance structures, a 'Rebuild' warning is displayed
- Click on the S to rebuild the structures with the latest stackup information and re-calculate the impedance results
- If the structure browse control indicator displays red it denotes a structure impedance result outside tolerance. In this case structure 2 of 8. This usually can be resolved by using the Goal Seeking function to adjust trace widths / separation

Stack Up Editor	DRC:0	Controlled Impedan	ce CI Results
+ × ×	C 🛛	- 🔟 🌉 🎽	notes
	All I	< < <mark>2 Of 8</mark>	> >

Step 13: Printing a technical report

The 8 layer stackup within drilling and impedance structure information is now complete, the final step is to generate a technical report Stackup File properties

- Use the File | Properties option to add useful information about the stackup, such as descriptive stackup name, date created, author and company information
- Load the Technical Report option by using the File | Print | Technical Report

tackup File properties		
The fields below are optional		
Descriptive Stackup Name	8 Layer Material Library Stack	1
Stack Top Side Label		1
Stack Bottom Side Label		1
Date Created	22/08/2013	1
/ersion	1.00	ĺ
Revision	Show/Hide Revision Information	
Author	Richard Attrill	1
Company	Polar Instruments Ltd	1
Department	Engineering]
Site	Hampshire	1
Associated Documents	A	ſ
	Ψ	
	Ok	

Step 13: Printing a technical report (continued)

33 Copyright © Polar Instruments 2013

Step 13: Printing a technical report (continued)

 Use the III Select Stack Data Columns option to select the fields that you wish to print next to the stackup graphic

Use the Select Impedance
 Data Columns option to configure
 the impedance structure table

Step 13: Printing a technical report (continued) – sample output

ayer		Stack up			Supplie		Supplier escription	Descrij	otion	Туре	Processed Thickness	Mask Thickness	٤r	Color	Impedance ID				
					Polar Sam	oles	SM/001	Liquid Photolma	geable Mask	SolderMask		1.000	4.000	Green					
					Polar Sam	oles	FO/002		Copper Foil		1.400				1.2				
	1 -				Polar Sam		PP/001	F	PrePreg 1080				4.200						
					Polar Sam	ples	PP/001		PrePreg 1080		3.000		4.200						
											1.400								
				_	Polar Sam	ples	CO/017		FR4 Core	FR4	8.000		4.200		3.4				
					D-I 0		DD/001		D	Distantia	1.400		4 000		3,4				
					Polar Sam		PP/001 PP/001		PrePreg 1080				4.200 4.200						
_				_	Polar Sam	pies	PP/001	,	PrePreg 1080	Dielectric	1.400		4.200						
59.2000					Polar Sam	ples	CO/017		FR4 Core	FR4			4.200						
ß											1.400								
					Polar Sam	ples	PP/001	F	PrePreg 1080	Dielectric	3.000		4.200						
					Polar Sam	ples	PP/001	F	PrePreg 1080	Dielectric			4.200						
					0		00/017		FR4 Core	FR4	1.400		4 000		5,6				
					Polar Sam	pies	CO/017		FR4 Core	FR4	1.400		4.200						
					Polar Sam	oles	PP/001	F	PrePreg 1080	Dielectric			4.200						
					Polar Sam		PP/001		PrePreg 1080				4.200						
Ļ				7 🔽	Polar Sam	oles	FO/002		Copper Foi	Copper	1.400				7.8				
es.				_		ples :kness =		Liquid Photolma		SolderMask	1.400 K Thickness = 2		4.000 « Up Thie		7, 8 59.200 Stack U	p Thickness	with Solder N	fask = 61.200	1
pedance	Structure	Impedance Signal	Ref. Plane 1	Ref. Plane 2	Polar Sam Copper Thic Lower Trace Width	upper Trace Width	SM/001 11.200 D Trace Separation	electric Thickne	ngeable Mask ass = 48.000 Tol (+/- 0	SolderMask						p Thickness	with Solder M	1ask = 61.200	1
	Structure	Signal Layer	Plane 1 in Layer	Ref. Plane 2 in Layer	Polar Sam copper Thic Lower Trace Width (W1)	Upper Trace Width (W2)	SM/001 11.200 D Trace Separation (S1)	electric Thickne Target Impedance	ngeable Mask ass = 48.000 Tol (+/- %)	SolderMask						p Thickness	with Solder M	1ask = 61.200	1
pedance		Signal	Plane 1	Ref. Plane 2	Polar Sam Copper Thic Lower Trace Width	upper Trace Width	SM/001 11.200 D Trace Separation	electric Thickne Target Impedance	ngeable Mask ass = 48.000 Tol (+/- 0	SolderMask						p Thickness	with Solder M	1ask = 61.200	1
pedance		Signal Layer	Plane 1 in Layer	Ref. Plane 2 in Layer	Polar Sam copper Thic Lower Trace Width (W1)	Upper Trace Width (W2)	SM/001 11.200 D Trace Separation (S1)	Target Impedance	ngeable Mask ass = 48.000 Tol (+/- %)	SolderMask						p Thickness	with Solder M	1ask = 61.200	1
pedance ID 1		Signal Layer 1	Plane 1 in Layer 2	Ref. Plane 2 in Layer 0	Polar Sam opper Thio Lower Trace Width (W1) 10.156	Upper Trace Width (W2) 9.156	SM/001 11.200 D Trace Separation (S1) 0.000	Target Impedance	geable Mask sss = 48.000 Tol (+/- C %) II 10.000	SolderMask						p Thickness	with Solder M	1ask = 61.200	1
pedance ID 1		Signal Layer 1	Plane 1 in Layer 2	Ref. Plane 2 in Layer 0	Polar Sam opper Thio Lower Trace Width (W1) 10.156	Upper Trace Width (W2) 9.156	SM/001 11.200 D Trace Separation (S1) 0.000	Target Impedance 50.000	geable Mask sss = 48.000 Tol (+/- C %) II 10.000	SolderMask						p Thickness	with Solder M	fask = 61.200	1
pedance ID 1 2		Signal Layer 1	Plane 1 in Layer 2	Ref. Plane 2 in Layer 0	Polar Sam opper Thio Lower Trace Width (W1) 10.156 8.348	Upper Trace Width (W2) 9.156 7.348	SM/001 11.200 D Trace Separation (S1) 0.000 11.652	Target Impedance 50.000	geable Mask ass = 48.000 Tol (+/- C %) II 10.000	Solder Mask						p Thickness	with Solder M	1ask = 61.200	1
pedance ID 1 2		Signal Layer 1	Plane 1 in Layer 2 2	Ref. Plane 2 in Layer 0	Polar Sam opper Thio Lower Trace Width (W1) 10.156 8.348	Upper Trace Width (W2) 9.156 7.348	SM/001 11.200 D Trace Separation (S1) 0.000 11.652	Target Impedance 0 50.000 2 100.000 50.000	geable Mask ass = 48.000 Tol (+/- C %) II 10.000	Solder Mask						p Thickness	with Solder N	fask = 61.200	1
1D 1 2 3		Signal Layer 1 1	Plane 1 in Layer 2 2	Ref. Plane 2 in Layer 0 0	Polar Sam, copper Thic Lower Trace Width (W1) 10.156 8.348 5.375	Upper Trace Width (W2) 9.156 7.348 4.375	SM/001 11.200 D Trace Separation (S1) 0.000 11.652 0.000	Target Impedance 0 50.000 2 100.000 50.000	geable Mask sss = 48.000 Tol (+/- C %) In 10.000 10.000	SolderMask Solder Mask Solder Mask Calculated 49.840 100.100 49.580						p Thickness	with Solder M	1ask = 61.200	1
pedance ID 1 2 3 4		Signal Layer 1 1 3 3	Plane 1 in Layer 2 2 2 2 2	Ref. Plane 2 in Layer 0 0	Polar Sam, copper Thic Trace Width (W1) 10.156 8.348 5.375 5.056	Upper Trace Width (W2) 9.156 7.348 4.375 4.056	SM/001 11.200 D Trace Separation (S1) 0.000 11.652 0.000 14.943	Target Impedance 0 50.000 2 100.000 50.000	geable Mask sss = 48.000 Tol (+/- C %) In 10.000 10.000	SolderMask Solder Mask Salculated 49.840 100.100 49.580 99.700	K Thickness = 2	2.000 Stac	k Up Thie	ckness =	59.200 Stack U	p Thickness	with Solder M	1ask = 61.200	1
pedance ID 1 2 2 4 6 ckName: 8	Image	Signal Layer 1 1	Plane 1 in Layer 2 2 2 2 2	Ref. Plane 2 in Layer 0 0	Polar Sam, opper Thic Trace Width (W1) 10.156 8.348 5.375 5.056	Upper Trace Width (W2) 9.156 7.348 4.375 4.056	SM/001 11.200 D Trace Separation (S1) 0.000 11.652 0.000 14.943	Target Impedance 0 50.000 2 100.000 50.000	geable Mask sss = 48.000 Tol (+/- C %) In 10.000 10.000	SolderMask Solder Mask Solder Mask Calculated 49.840 100.100 49.580		2.000 Stac		ckness =		p Thickness	with Solder N	1ask = 61.200	1
pedance iD 1 2 2 4 4 6 ckName: 8 8 e: 22/08/20	Layer Mate	Signal Layer 1 1 3 3	Plane 1 in Layer 2 2 2 2 2	Ref. Plane 2 in Layer 0 0	Polar Sam, opper Thic Trace Width (W1) 10.156 8.348 5.375 5.056	Upper Trace Width (W2) 9.156 7.348 4.375 4.056	SM/001 11.200 D Trace Separation (S1) 0.000 11.652 0.000 14.943	Target Impedance 0 50.000 2 100.000 50.000	geable Mask sss = 48.000 Tol (+/- C %) In 10.000 10.000	SolderMask Solder Mask I Solder Mask Calculated 49.840 100.100 49.580 99.700	K Thickness = 2	2.000 Stac	k Up Thie	ckness =	59.200 Stack U		with Solder N	1ask = 61.200	1
pedance ID 1 2 2 3 4 6 ckName: 8 be: 22/08/2016 ckName: 8	Layer Mate	Signal Layer 1 1 3 3 erial Library Ste	Plane 1 in Layer 2 2 2 2 2	Ref. Plane 2 in Layer 0 0	Polar Sam, opper Thic Trace Width (W1) 10.156 8.348 5.375 5.056	Upper Trace Width (W2) 9.156 7.348 4.375 4.056	SM/001 11.200 D Trace Separation (S1) 0.000 11.652 0.000 14.943	Target Impedance 0 50.000 2 100.000 50.000	geable Mask sss = 48.000 Tol (+/- C %) In 10.000 10.000	SolderMask Solder Mask I Solder Mask Calculated 49.840 100.100 49.580 99.700	K Thickness = 2	2.000 Stac	k Up Thie	ckness =	59.200 Stack U	p Thickness	with Solder N	task = 61.200	1
upedance ID 1 2 2 4 4 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Image	Signal Layer 1 1 3 3 erial Library Ste	Plane 1 in Layer 2 2 2 2 2	Ref. Plane 2 in Layer 0 0	Polar Sam, opper Thic Trace Width (W1) 10.156 8.348 5.375 5.056	Upper Trace Width (W2) 9.156 7.348 4.375 4.056	SM/001 11.200 D Trace Separation (S1) 0.000 11.652 0.000 14.943	Target Impedance 0 50.000 2 100.000 50.000	geable Mask sss = 48.000 Tol (+/- C %) In 10.000 10.000	SolderMask Solder Mask I Solder Mask Calculated 49.840 100.100 49.580 99.700	K Thickness = 2	2.000 Stac	k Up Thie	ckness =	59.200 Stack U	Page	with Solder N	fask = 61.200	1

Summary

You have now completed the 'Building stackups using the Materials Library' tutorial.

If you have any questions please feel free to contact your local Polar office at: <u>www.polarinstruments.com/distrib/international_offices.html</u>

or contact us at polarcare@polarinstruments.com

Thanks again for using Speedstack.

This material is Copyright (C) Polar Instruments and maybe only be distributed solely for the purpose of training on licensed installations of Polar Speedstack and related Polar products. This document should not be edited or amended in any way without the express written permission of the copyright holder.