Controlled Impedance Test System

Accurate Impedance Measurement ensures Signal Integrity

CITS900s4

Enhanced accuracy
Excellent R&R
Single ended & differential measurement
CITS900s4 - 4 Channels

polarinstruments.com
As a PCB manufacturer, you are almost certainly now producing controlled impedance PCBs for your customers – it is estimated that within a few years these types of boards will account for some 70% of the market.

But how do you verify the PCB characteristics, control your production process and demonstrate quality conformance to your customers?

Controlled impedance PCBs are used across a broad range of applications to help ensure high frequency signal integrity. Designers invariably specify these types of PCBs whenever the edge speeds of digital signals are faster than 1ns, or analog signals climb above 300MHz.

The dimensions of the trace and the properties of the PCB material – which can vary from batch to batch – determine the characteristic impedance of a PCB trace. To control trace impedance, PCB manufacturers usually vary trace width to compensate for different batches of PCB material. Historically, they were then forced to use specialist laboratory equipment, such as an oscilloscope-based time domain reflectometer (TDR) or a network analyser, to measure the characteristics of a PCB, or a representative trace etched on the board or a test coupon. This approach was complex, expensive, and far from ideal in a production environment.

Many electronics designers – especially those pushing performance boundaries in the defence/aerospace, communications and IT industries – are now taking controlled impedance PCBs a stage further, by using close coupled signals and mixed dielectric pcb stackups to improve noise immunity and reduce timing errors on very high speed interconnects. For PCB manufacturers serving these rapidly growing electronics sectors, verifying the differential impedance of these balanced traces has proved difficult until now.
The total test solution

The CITS900s4 uses TDR techniques to measure the reflection of fast rise-time pulses, and provides a graphical view of a conductor’s characteristic impedance along its length. It automatically reports when a measurement is outside the tolerance you specify.

CITS900s4 has 4 channels that allow you to permanently connect two or more test probes making it ideal when your coupons have both single ended and differential traces. The CITS900s4 software automatically prompts the user to select the correct probe.

CITS900s4 provides you with the ideal solution for easily and accurately verifying the impedance of PCBs both single-ended trace impedance and the differential impedance of balanced traces.

Enhanced Accuracy

High accuracy is assured over a wide range of impedance measurement as each CITS900s4 is factory calibrated at 28, 50, 75 and 100 ohms against precision reference airlines, traceable to National Standards. You obtain accurate and repeatable results. In addition the calibration is further extended to measure tightly coupled differential pairs now increasingly used on mixed dielectric builds and demanding communications applications. Users achieve excellent gage R&R using non-technical operators. Excellent correlation with field solver predictions can be achieved.
Exceptional ease of use

CITS900s4 is exceptionally easy to use. Powerful software automates every aspect of testing, enabling the entire process to be controlled by a mouse or footswitch. You simply select a test file containing the PCB test impedances and tolerances, position the probe and press the footswitch. Typical PCBs and coupons have a number of different impedances and the CITS900s4 can execute a series of impedance tests automatically, prompting you to reposition the probes as appropriate.

Results

Test results are clear, the CITS900s4 automatically processes the data to produce a simple display of impedance versus distance, and reports a PASS or FAIL for each test. Automatic datalogging enables test results, together with system set-up data and measurement criteria to be easily exported to a wide variety of third-party database or spreadsheet packages for real-time statistical process control.

Statistical Process control

Basic SPC data is provided from the optional Datalog report generator (DRG). The DRG allows you to process your results and share them electronically with your clients.

Professional SPC is provided by QC-Calc real time SPC software. QC-Calc interfaces directly with the CITS to provide you with SPC data on impedance control in real time. For more information please look at: www.prolinksoftware.com

Applications

CITS900s4 is a robust instrument suitable for use in production environments by non-technical operators.

It is also widely used by contract manufacturers and OEMs to verify conformance from PCB suppliers.
Accessories

There are a wide number of accessories to support your specific application including:

Probes
There is a wide range of probes with footprints to suit your coupon layout. These have been designed to ensure maximum repeatability and accuracy of measurement. For more information on probes consult www.polarinstruments.com

Verification kit and airlines
A range of airlines (28, 50, 75 and 100 ohms) and semi-rigid references (25, 50, 75 and 100 ohms) with Certificates of Accuracy traceable to National Standards (NIST and NPL). These allow you to verify the accuracy of your CITS.

Data Report Generator
This is an optional software module that imports data from the CITS datalog and produces customer reports including calculation of Cp and Cpk

Professional Statistical process control
Professional real time SPC software (QC-Calc) optionally allows you to output real time SPC data from the CITS900s4. More information on QC-Calc is available from www.prolinksoftware.com

Coupon Holder
This will adjust to hold most sizes of coupon and ensures maximum accuracy of measurement.
CITS900s4

Measurement Capability

- **Range**: 0 – 150 ohm
- **Accuracy**: 1% at 50 ohm
 (Calibrated against traceable standards at 28, 50, 75 and 100 ohm)
- **Testable length**: 2m maximum
- **Horizontal display resolution**: 0.2mm (0.008")
- **Vertical display resolution**: 0.03 ohm

System Inputs & Outputs

- **Test probe channels**: CITS900s4 - 4 channel
- **Pass/Fail outputs**: Opto-isolated, open collector
- **Socket for anti-static wrist strap**: 4mm
- **Computer communication port**: USB 2.0
- **Power input**: IEC, 85V-250V @ 80/60Hz, 0.1 to 0.06A

Standard Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe cable</td>
<td>WMA360</td>
</tr>
<tr>
<td>100 ohm differential probe</td>
<td>IPD100</td>
</tr>
<tr>
<td>50 ohm probe</td>
<td>IP50</td>
</tr>
<tr>
<td>Sample coupon</td>
<td>MPCD1325</td>
</tr>
<tr>
<td>Footswitch</td>
<td>ACC323</td>
</tr>
<tr>
<td>Anti-static wrist strap & cable</td>
<td>ACC185 + ACC175</td>
</tr>
<tr>
<td>Operator Manual</td>
<td>MAN200</td>
</tr>
<tr>
<td>Power cord</td>
<td></td>
</tr>
<tr>
<td>50 ohm reference impedance</td>
<td>ACC254</td>
</tr>
<tr>
<td>Torque wrench</td>
<td>ACC313</td>
</tr>
<tr>
<td>SMA adaptors</td>
<td>MQX428</td>
</tr>
<tr>
<td>USB cable</td>
<td>ACC371</td>
</tr>
</tbody>
</table>

Optional Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 ohm probe, variable pitch</td>
<td>IP50V</td>
</tr>
<tr>
<td>Datalog Report Generator software</td>
<td>ACC230</td>
</tr>
<tr>
<td>Service Manual</td>
<td>MAN201</td>
</tr>
<tr>
<td>Verification kit (semi rigid)</td>
<td>ACC229</td>
</tr>
<tr>
<td>28 ohm, 50 ohm, 75 ohm and 100 ohm reference airlines</td>
<td>ACC232 - ACC235</td>
</tr>
</tbody>
</table>

PC Requirements

- PC running Windows XP Professional. 1.6GHz or higher,
 1Gb RAM, SVGA monitor, USB 2.0